Chapter 1
Welcome Aboard

Welcome to Learn Java on the Macintosh. By picking up this book, you have taken
the first step toward learning the Java programming language. You're about to
learn the most powerful and exciting computer language in wide use today.

What's in This Package?

Learn Java on the Macintosh is a book/CD-ROM package. The book is filled with
diagrams, explanations, examples, and exercises designed to teach people new to
programming the basics of how to program in Java. This book is tailor-made for
people who do not have a programming background but want to learn Java as
their first programming language. We'll start by explaining what programming is
all about and then move into the specifics of programming in Java and building
Java applets (Java programs that run over the Web). By working through the ex-
amples and exercises, you can use this book as a self-study guide to build a solid
foundation for your explorations of the Java language.

In the back of the book, you’ll find a compact disc (CD-ROM) that includes a
customized version of Metrowerks CodeWarrior, one of the most popular devel-
opment environments for the Macintosh. The CD-ROM also contains all of the
sample code explored in this book, as well as the answers to all of the exercises.
You'll use the CodeWarrior development environment to work with the example
Java programs shown in this book and to write your own Java programs.

Also, where appropriate, this book will put the Java language in perspective
by mentioning what came before it and by easing you into what you'll experience
on the road to becoming a Java programmer.

Why Learn Java?

Java is fast becoming the standard in software development primarily because it
is transforming the World-Wide Web. While Java is a relatively new language in
the evolution of programming, Java is already talked about and used everywhere.
There are many good reasons for this, and you'll gain strong insights into these

WELCOME ABOARD

reasons as you progress through this book. By the time you've reached the final
chapter, you’ll be ready to take part in the community of knowledgeable Java pro-
grammers, and you’ll be able to make the Web come alive by writing applets of
your own.

What Should You Know to Get Started?

First of all, you do not already need to know how to program in some other lan-
guage to learn Java. Java is a simpler language than other programming lan-
guages in use today, including C and C++. However, though the language itself is
simple, there are a few concepts to get straight before you dive in and start writ-
ing code. Chapters 3 and 4 ease you into the Java mind-set before you begin learn-
ing the language in Chapter 5. So hang through the introductory chapters; we’ll
get to the good stuff soon.

Second, to use the CD-ROM effectively, you do need to know how to use a
Macintosh and how to use the mouse to make selections and open and close win-
dows. Do you know how to double-click an application to start it up? Does the
scrolling list in Figure 1.1 look familiar? Do you know how to drag and drop
icons? If you use the Macintosh to run programs and edit documents, you have all
the skills you need to get started learning Java. And if you have a desire to learn a
programming language, you have the only prerequisite you need!

Open Document:

|22 My Documents v |

] Preview 2 Applications -+ = BlueHorse

[0 bames
L1 Internet Eipnd
O Memos

[0 Miscellaneous

Desktop

Cancel

ik

Help

<

Format: | All available

[J Show Al Files

Figure 1.1 Scrolling through a list of documents.

THE LAY OF THE LAND

Third, it’s helpful to be familiar with the various kinds of applications avail-
able for your Mac. The more familiar you are with what modern graphical appli-
cations look like—such as word processors, drawing programs, games, personal
finance software, and so on—the better sense you'll have for what your own ap-
plets should look like as well.

Finally, it'’s important to have had experience using the Web. This book as-
sumes you already have used browsers to tour the Web and are up-to-date on the
latest browsers that incorporate Java. For more information on Web browsers that
incorporate Java, turn to Appendix G. Also, check out the Sun, Netscape, and
Microsoft home pages.

What Equipment Will You Need?

Although you can learn the basic concepts of Java just by reading this book, you'll
get the most out of Learn Java on the Macintosh if you run each example program as
you read how it works. To do this, you’ll need a Macintosh with a 68020, 68030,
68040, or PowerPC processor; at least 8 megabytes of memory; System 7.1 or a
newer version (for 68K-based Macintosh computers) or System 7.1.2 or a newer
version (for Power Macintosh computers); and, of course, a CD-ROM drive so
that you can install your new programming environment. If you already have
Metrowerks CodeWarrior, you'll still want a CD-ROM drive to install the sample
code and exercises contained on the CD-ROM. (If you are using a version of the
Mac OS before System 7.5, you must also obtain and install Apple’s Thread Man-
ager extension into your extensions folder. Appendix G contains references for
where to look for this software and how to find other information relating to Java
and CodeWarrior.)

The Lay of the Land

There are 15 chapters in this book, plus 7 appendixes. Chapter 1 (this chapter) pro-
vides an introduction to what you'll find in this book and what this book covers.

Chapter 2 introduces you to the CD-ROM portion of the book/CD-ROM
package. You'll learn about CodeWarrior, the Java programming environment
that you’ll use to run all of the programs in this book. This chapter explains how
to install the software that is on the CD-ROM (you’ll use this software to develop
your own Java applets and to learn the Java language) and how to test Code-
Warrior to ensure it's working properly.

Chapter 3 offers an overview of programming for the World-Wide Web and
shows you how Java fits into the Web picture. Just how does a Web browser ar-
range a Web page? And what does the browser do when it encounters a Java ap-
pletin a Web page?

WELCOME ABOARD

Chapter 4 begins the exploration of concepts central to Java programming. It's
always a good idea to design a program as thoroughly as you can before you
begin writing code; this chapter suggests four questions you should try to answer
before you turn to writing your software. This chapter also introduces three terms
you may have already heard people mention in relation to Java: class, object, and
method. You'll explore these terms by working through a detailed example, with-
out yet writing any code, that illustrates how to design Java applets.

Chapter 5 introduces the steps you’ll follow when you develop a Java applet.
By creating the simplest possible Java applet, you'll learn how to work with
CodeWarrior to create a new program, edit a file to write your own Java program,
get your Java program ready to run, and then execute your program.

Chapters 6 explores the basics of most programming languages, including
Java: variables and operators. When you finish this chapter, you'll have tasted
your first morsels of real programming. You'll know how to declare a variable
and how to use operators to store data in your variables. In particular, you'll learn
about ways to refer to numbers inside your program. You'll even learn a little bit
about programming with style!

Chapter 7 provides an introduction to defining and invoking methods
(chunks of code that accomplish a specific task). You'll also learn how to hook into
the communication that takes place between the browser and your own Java ap-
plet to start to customize your applet.

Chapter 8 moves into the true potential of programming languages by dis-
cussing flow control. You'll learn how to use Java programming constructs, such
asif,while, and f or loops, to control the direction of your program and indi-
cate when to execute certain sets of instructions instead of others.

Chapter 9 explores how to create and use objects that are based on your
classes. You'll keep track of data by using objects, and you’ll provide behavior for
your objects by writing methods. Once you've completed this chapter, you'll
know many of the concepts central to Java.

Chapter 10 introduces you to lots of classes provided for you by Java that you
can use in your own applets. You'll learn how to extend Java’s classes to add your
own data and behavior to what Java provides by default.

Chapter 11 discusses what it means to create a graphical user interface in Java.
You’ll learn the necessary steps for creating your own windows, buttons, and text
input fields, and you’ll learn how to paint pictures in your applet’s window. Cre-
ating a graphical user interface will enable your Java applets to become part of the
World-Wide Web. You'll also learn how to respond to mouse clicks and keyboard
entry to create truly interactive applets.

Chapter 12 returns to variables and data types to cover some more ways to
store data in your classes, objects, and methods. These include floating-point

CONVENTIONS USED IN THIS BOOK

values, characters, strings, collections of data called arrays, and minidatabases
called vectors and hash tables.

Chapter 13 dives into a few advanced topics that can help you write even
more powerful programs. For example, you'll learn how you can get into the act
of creating new objects from your own classes by defining constructors and how
to respond to error conditions by handling exceptions. You'll be introduced to the
concept of interfaces, and you’ll also learn how your HTML (Hypertext Markup
Language) pages can pass data to your applets.

Chapter 14 provides an overview of how you can create stand-alone Java ap-
plications in addition to the applets you’ve developed to run on the Web. Stand-
alone applications offer almost all of the features of applets without requiring
your computer to be connected to the Internet at all.

Chapter 15 offers a path for further exploration since you will have surveyed
the basics of the Java language and have achieved a solid grasp of how to pro-
gram in Java. This chapter shows you where to look to learn more about Java’s
advanced topics, such as using threads to make more than one thing occur at the
same time.

Appendix A is a glossary of the technical terms used in this book.

Appendix B contains a listing of all of the programs discussed in this book.
You might find this appendix particularly useful if you're looking for an example
of some Java code in action, such as how to define a method, how to create a new
object, or how to write a f or loop.

Appendix C provides a summary for the syntax of each of the Java statements
and keywords introduced in this book. Need an exact specification of a swi t ch
statement? It's right here in Appendix C.

Appendix D provides some more details about the version of Metrowerks
CodeWarrior included on the CD-ROM. It also describes the differences between
the version of CodeWarrior provided here and the commercial version.

Appendix E presents exercises for each chapter that you can use to turn this
book into a self-study guide.

Appendix F provides answers to the exercises.

Appendix G points the way to other books and resources on the Internet for
learning more about programming in Java.

Conventions Used in This Book

As you read this book, you'll encounter a few standard conventions that make the
book easier to read. For example, technical terms appearing for the first time are
in boldface. You'll find most of these terms in the glossary in Appendix A.

All of the source code examples in this book are presented using a special
font, known as the code f ont. This font is also used for source code fragments

WELCOME ABOARD

By the Way

that appear in the middle of running text. Menu items, or items you’ll click on, ap-
pear in Chicago font.

Occasionally, you'll come across a block of text set off in a box, like this.
These blocks are called tech blocks and are intended to add technical detail to
the subject currently being discussed. Each tech block fits into one of five
categories: “By the Way,” “Style,” “Detail,” “Definition,” and “Warning.”
Each category has its own special icon, which appears to the left of the tech
block. “By the Way” tech blocks are intended to be informative but not cru-
cial. “Style” tech blocks contain information relating to your Java program-
ming style. “Detail” tech blocks offer more detailed information about the
current topic. “Definition” tech blocks contain the definition of an important
Java term. “Warning” tech blocks are usually trying to caution you about
some potential programming problem, so pay attention!

Review

This book provides an introduction to Java for new programmers. By using the
Java development environment available on the CD-ROM included with this
book, you'll be able to work through all of the syntax, grammar, and concepts re-
quired to begin mastering the Java language.

What's Next?

You're ready to roll! In Chapter 2, you'll install the software that is on the CD-
ROM and explore the CodeWarrior environment so that you can begin running
the samples in this book and writing your own Java programs.

Chapter 2

Installing and Testing
CodeWarrior Lite

Tucked into the back of this book is a CD containing a special, limited version of
CodeWarrior, one of the leading Macintosh programming environments. This
special version is CodeWarrior Lite, and it provides you with all the tools you'll
need to work with the programming examples presented in this book.

This chapter will guide you through installing and testing CodeWarrior Lite.
We'll run an applet here that writes “Hello, world!” in its window, but we’ll skim
over the details concerning how the applet actually makes this occur. The rest of
this book covers this kind of thing in detail, but before we dive into the deep
ocean of Java programming, let’s get CodeWarrior Lite up and running.

Installing CodeWarrior Lite

When you insert the Learn Java CD into your CD-ROM drive, the main Learn Java
CD window will appear on your desktop. (If this window does not appear auto-
matically, double-click the CD icon that appears on your desktop.) In the center of
that window is the CodeWarrior Lite Installer icon (Figure 2.1). Double-click that
icon to launch the installer.

Cw Lite Installer

Figure 2.1 The CodeWarrior Lite Installer icon.

INSTALLING AND TESTING CODEWARRIOR LITE

By the Way

If you already own version 9.0 or higher of CodeWarrior, you may want to
skip the installation of CodeWarrior Lite. If that is the case, just drag the
Learn Java Projects folder from the top level of the CD onto your hard drive.
If you do run into problems, try removing the full CodeWarrior from your
hard drive (only do this if you have a backup or the original installation CD
around, however!) and install CodeWarrior Lite instead.

When you start the installer, the first thing you'll see is the CodeWarrior Lite
information screen. Click the Continue button. Next, a license agreement will ap-
pear in a scrolling window. Read the license agreement (you'll love it); then click
the Continue button. This time, you'll be presented with a list of possible installa-
tion configurations (Figure 2.2). In this version of CodeWarrior, there’s only one
configuration, named “Standard Install,” which will require about 18 megs of free
hard drive space. If you've got the space, click the Instal button. Otherwise, click
Quit and go make some room.

After the installation is complete, you will still need to do one thing: At the
top level of the Learn Java CD is the Learn Java Projects folder, which contains all
of the book’s programs. Drag this folder from the CD onto your hard drive. Once
you have done this, you will no longer need the CD (though you might want to
keep it as a backup). Also, if the installer suggests you restart your Mac, make
sure you do so before proceeding with the rest of this chapter.

Install the following:
Standard Install

@ Installs Code'warrior Lite™.

In=tallation requires: 17509

[owit]| instan |

Figure 2.2 The CodeWarrior Lite installer (about 18 megs of free hard drive space).

Testing CodeWarrior Lite

TESTING CODEWARRIOR LITE

Now that CodeWarrior Lite is installed, let’s take it for a spin. Open the Learn
Java Projects folder on your hard drive; then open the subfolder named 02. 01-
hel | o, wor | d. You should see a window similar to the one shown in Figure 2.3.
The three files in this window contain the ingredients you’ll use to build your first

Java applet.

Double-click the file Hel | oWor | d. pA window just like the one shown in Fig-

ure 2.4 should appear.

This window is called the project window. It contains information about the
files used to build a Java applet. Since this information is stored in the file Hel | o-
Wor | d. Y this file is also known as a project file. A file that ends in the characters
.u is likely to be a project file. (You can type a ‘u’ (the Greek letter mu) on the Mac
by holding down the option key and typing the letter m.)

=] 02.01 - hello, world EE
Zitems 216.4 MB in disk 12.5 MB availab
: : : -
; =] =]
HelloWworld.p Helloworld.java Hellowarld.htiml —
@l BE
Figure 2.3 The 02.01 - hel l o, worl d subfolder.
= HelloWorld.p EE
[#] Fite Code Data 4
T ¢ Java Source 0: 0: [z |5
HelloWorld.java 0 O]
' HTHML files (i} 0. [
¥ Hellaworld.html nia: niai]
=
2 file(s) 1] 1] =]

Figure 2.4 The Hel | oWor | d. p project window.

INSTALLING AND TESTING CODEWARRIOR LITE

10

Warning

If you got a message telling you that the document Hel | oWr | d. pcould not
be opened, restart your Mac and try again. If this still doesn’t work, try re-
building your desktop. To do this, restart your Mac and then press the com-
mand and option keys simultaneously. Keep holding both keys down until
the Mac asks you if you'd like to rebuild your desktop. Click OK and go
watch MTV for a few minutes until it’s done.

If some other window appears instead of the one shown in Figure 2.4, you
double-clicked the wrong file. That’s no problem; quit CodeWarrior and try dou-
ble-clicking the file Hel | oWor | d. |again.

The project window shown in Figure 2.4 is split into two groups. The first
group, titled “Java Source,” lists the files that contain the Java source code for
your application. Source code is a set of instructions that determine what your ap-
plication will do and when it will do it. The HelloWorld project contains two Java
source files. The first Hel | oWr | d. j avaontains the specific Java instructions that
define the applet that will make the words “Hello, world!” appear in the applet.
The second file, cl asses. zi pidentifies a file containing code supplied by Java
that gets combined into all your applets.

The second group, titled “HTML files,” contains a single Hypertext Markup
Language (HTML) file called Hel | oWor | d. ht ni . Let’s take a look at this HTML
file before looking at the Java source code. Double-click this file name in the
project window. This will open a window displaying the contents of the HTML
file (Figure 2.5.). (HTML is the language used to define Web pages.)

This simple HTML file specifies two things. First, it specifies the name of a file
containing the applet to run and where to find it. This file name is given as
Hel | oWor | d. cl asgas specified by code=), and its location is given as the folder
named Hel | oWor | d (as specified by codebase=). Second, it specifies the size of
the area in which the applet will appear. This size is given as 250 pixels wide by 50
pixels high.

EOi=————— Hellollorld.him ="i=—————-001=
<opplet codebase="Hel lolor1d” code="Hel lalorld.class" width=250 height=350: ﬁ
<fapplat: !

]

DIEE] [Line: 1 [][

Figure 2.5 The contents of the Hel | owor | d. ht i file.

TESTING CODEWARRIOR LITE

Even though the HTML file specifies that the applet is contained in a file
named Hel | oWor | d. cl assyou would not find a file named Hel | oWr | d. ¢l assif
you did a search of your Mac hard drive right now. Not to worry: Creating . cl ass
files is what CodeWarrior is all about! We'll create this file in just a moment.

You can display this HTML file using a Web browser that supports Java to run
your applet. Another way to run an applet in CodeWarrior is to drop an HTML
file that references your applet onto Metrowerks Java, an application supplied
with CodeWarrior. Doing this launches Metrowerks Java, which then runs the ap-
plet referenced by the HTML file.

Before we run the applet, we have to create the file named Hel | dMor | d. cl ass
Let’s start by taking a look at the source code in Hel | d\or | d. j avaDouble-click the
label Hel I oWbr | d. j ava in the project window. A source code window will ap-
pear containing the source code in the file Hel | oWor | d. j avdFigure 2.6). This is
your first Java program.

The HelloWorld program tells the computer to display the text “Hello,
world!” inside the applet’s window. Don’t worry about how this works right now.
We'll get into the details later on. For now, let’s create the applet and crank it up.

Go to the Project menu and select Make (alternatively, you can hold down the
command key and type the letter m). CodeWarrior now does two things. First, it
creates the folder named HelloWorld. Second, it creates the file named
Hel | oWor | d. cl assand places this file into the HelloWorld folder. These will
show up in the same folder that contains your source code and are shown in
Figure 2.7.

Hel | oWor | d. cl asds the file referenced from Hel | owWor | d. ht ml This file is
known as a compiled class file. The compiled class file contains the definition for
your applet that is ready to run in a Web page. This is what CodeWarrior does: It
turns your Java source files into files that can be run as part of the Web.

Open the folder named Hel | oWor | dto take a look at the icon for the file
Hel | oWor | d. cl assThis file will appear as in Figure 2.8.

S[[=——— HelloWorld. java EEEI
ublic class HelloMorld extends java.applet.Applet { N

public woid paintdjava.awt Graphics g {
g.drawstringt"Hel 1o, world!™, 100 , 253;

}
DIEE] [Line: 2 N EE [

Figure 2.6 The source code window with the source code from the file
Hel I oWorl d. j ava.

11

INSTALLING AND TESTING CODEWARRIOR LITE

== 02.01 - hello, world HEE
S items 2186 MB in disk 1232 MB availab
3 ; i e
; =] =l
Helloworld.p. Hellowarld java HelloWorldhtmi
Hellowaorld.class Helloworld.zip e
e B

Figure 2.7 The subfolder 02. 01 - hel | o, wor | d with the addition of the HelloWorld
class file (Hel I oWor I d. cl ass) and the HellowWorld zip file (Hel | oWor | d. zi p).

™,
-i“!-

HelloWworld.class

Figure 2.8 The compiled class file generated by CodeWarrior, called Hel | oWor | d. cl ass.

By the Way
Who's the funny-looking cartoon character that appears on the Java class file
icon and in other places relating to Java? The guy’s name is Duke, and he’s
the unofficial mascot of the Java language. (Most programming languages
do not have mascots, but you're in luck with Java.) You'll run across him in
various places as you pursue your investigations into Java.

You can close the HelloWorld folder once you've seen the compiled class file.
Now for the good part: Run the applet now by dragging and dropping the icon
for the HTML file that is in your HelloWorld project folder onto the Metrowerks
Java application icon. You'll find the Metrowerks Java application icon in your
Metrowerks CodeWarrior folder. (Figure 2.9 shows what these folders and appli-
cation icons look like. Also, check out Figure 2.11 for pictures of what’s happening
here.)

The very first time you try to run an applet using Metrowerks Java, a window
may appear that informs you that you are about to run a Java applet. Metrowerks
Java presents this message mainly because Java makes an incredible effort to en-
sure that no applets do damage to your Mac (or to any other computer on which

12

TESTING CODEWARRIOR LITE

P‘Ietrnwer I:::Ie'w'arrin:ur

'
i

Metraowerks Java

v
&

Metrowerks Java.

Figure 2.9 The Metrowerks CodeWarrior folder contains the Metrowerks Java folder,
which contains the Metrowerks Java application.

you run the applet). This message is perfectly normal. To acknowledge that you
wish to run Java applets, which is what you’ll do throughout this book, click the
Accept button at the bottom of the information window.

Once you drop the HTML file onto the Metrwerks Java application and indi-
cate you wish to run the applet, two windows will appear.

By the Way

We'll use the drag-and-drop method in this book to run applets, but there
might be other ways to run applets by the time the CodeWarrior develop-
ment environment is complete for Java. (Of course, you can always run the
applet in a Java-enabled Web browser.) Check the documentation with your
development environment for more information on other ways to run your
applets. (One convenient technique is to make an alias for Metrowerks Java
and place this somewhere easily accessible on your desktop.)

The first window is titled “Java Output.” The Java Output window will look
like the one shown in Figure 2.10. This window provides a place for the Metro-
werks Java application as well as for applets themselves to display information to
the developer.

13

INSTALLING AND TESTING CODEWARRIOR LITE

14

By the Way

By the Way

]

SI=——————— Java Dutput
Executing: jovai sun.applet.Appletliswer

/B lueHor=se Learnf20Jawal20Projec ts820KR /02 . 0 1820-820he | 1o, B20wor 1d/He | lolor1d . himl
Comp leted(O?

>

B[]

| B2

Figure 2.10 The Java Output window with messages from the Metrowerks Java
application and from the applet itself.

You may notice the words Bl ueHor seat the start of the path that indicates
where the . ht m file is located on the Mac. These screen shots reflect the par-
ticular Mac on which they were made (on this Mac, the hard disk was
named Bl ueHor sg. This name will vary, of course, from Mac to Mac. When
run on your particular computer, the Java Output window will display the
name of your hard disk instead.

Looking at the Java Output window, you can see that Metrowerks Java pro-
vides some information so that you can tell what’s happening behind the scenes.
Metrowerks Java then reads in the class file referenced by the HTML file. This is
known as loading the class.

These messages appear in the Java Output window when the default for the
Applet Viewer is “verbose.” Check the documentation that comes with your
environment to see how you might be able to adjust this setting in Code-
Warrior.

After the class is loaded, Metrowerks Java starts up the Applet Viewer. The
Applet Viewer is the second window that appears when you drop the HTML file
onto Metrowerks Java icon. When you do so, Metrowerks Java starts up the Ap-
plet Viewer. The Applet Viewer is CodeWarrior's way of simulating a Web
browser so that you can work with your applets from within the Metrowerks Java
environment (that is, without turning away from CodeWarrior and starting up a
full browser application). The Applet Viewer knows how to display the applet

TESTING CODEWARRIOR LITE

referenced by the HTML file, although it will not display any other information
defined by the HTML file. Metrowerks Java runs the applet in the Applet Viewer.
As you can see from Figure 2.11, the applet simply displays the words “Hello,
world!” in the center of the window.

drag and drop - &

Hellowarid.html Metrowerks Java.
HTML fileicon Metrowerks Java application icon

==

find the applet classfile referenced by the HTML file

FFrri

HelloWworld.class

load the applet classfile
display the Java Output window
start the Applet Viewer
run the applet in the Applet Viewer

v —

=[ZZ Applet Viewer: HelloWorld.class ==

Hello, swarld!

applet started

Figure 2.11 What happens when you run an applet.

15

INSTALLING AND TESTING CODEWARRIOR LITE

16

=S=——————-— Hellollorld.p =————1I=
[¢] File Code Data W
= Jarva Source ;D49 0 & [
Hello'warld. java 549 H =
classes zip ' : : 03]

HTHL files 0
Hellow' or1d .kt niai ndai

% file(s) 549 1]]

Figure 2.12 The project window showing the size of the program in bytes now that the
applet has been created.

Once you are done admiring this amazing applet, select Quit from the File
menu. This will quit Metrowerks Java and the Applet Viewer, and you'll be back
in CodeWarrior Lite.

Before we leave, check out the project window again (you can reopen it by
double-clicking the file Hel | oWor | d. pif you've already closed the project win-
dow). If you look closely, you'll see that numbers appear in each row of the
project window, where before there were only 0s (Figure 2.12). These numbers in-
dicate the size of the resulting applet code in bytes.

We're all done for now. You can quit CodeWarrior Lite if you'd like to. If
you're asked if you want to save the results of your program, select Don't Save and
let’s move on. (If you click the Savebutton, the results produced by your program
are saved as a text file, which you can then open by using CodeWarrior or your fa-
vorite word processor.)

Congratulations! You've just built and run your first Java applet!

Review

You've installed the CodeWarrior Lite development environment and even cre-
ated and run your first Java applet. You've poked around the CodeWarrior envi-
ronment a little, exploring the project file, the HTML file, and the Java source file.
You may have some questions relating to what you've seen. Rest assured: These
will all be answered soon enough. For now, with CodeWarrior up and running,
you're all set to forge ahead!

What’'s Next?

The next chapter provides a context for understanding Java. Chapter 3 looks at
Java in relation to the Web. You'll learn the important concepts behind Web pro-
gramming and why Java is a great language to use for writing programs that run
over the Web. We'll also touch on some concepts that will help you understand
the files you created when you compiled the HelloWorld Java applet in this chap-
ter. Chapter 4 introduces programming concepts you should know before you
begin writing Java programs. Once you understand these core concepts, we'll
ease into Java programming in Chapter 5.

WHAT'S NEXT?

17

Chapter 3

Web Programming
Basics

Before we dive into Java programming, let’s put this endeavor into context. You
probably know that Java programs can be run over the Web, but what does this
mean exactly? How do Web browsers arrange elements on a Web page, and what
does it mean to add a software application to a Web page? Software applications
are created by writing computer programs. What does it even mean to write a
computer program in the first place?

This chapter will answer these questions and more. You'll also learn how Java
meshes with HTML and why Java is a perfect programming language for writing
software applications that run over the Web. With these concepts under your belt,
you'll be able to turn to the specifics of Java in Chapter 4 and learn how to design
your own Java applets.

Web Content

Web pages can contain almost anything: pictures, text, links to other Web pages,
tables, charts, sound, animation, and more. These diverse multimedia elements
allow people to create very sophisticated Web pages. However, until recently,
Web pages were limited in that they could not incorporate software applications.
With Java, this is no longer the case. Java allows complete applications—drawing
programs, spreadsheets, word processors, games, and, in fact, any kind of appli-
cation at all—to be included as part of a Web page.

We'll often use the terms application and applet interchangeably. Throughout
this book, you will be writing applications in the traditional software sense,
but an applet (the “official” Java term invented by Sun Microsystems, the
company that developed the Java language) is a Java application that runs
over the Web.

Definition

19

WEB PROGRAMMING BASICS

20

Before we look at how to add a software application to a Web page, let’s re-
view how Web browsers work. This will allow you to understand how a Web
browser displays a traditional document containing text and formatting instruc-
tions in HTML and what a Web browser does when it encounters a software
application.

What Traditional Web Browsers Do

Web browsers do three things very well. First, they download files from other
computers connected to the Internet (Figure 3.1).

Typically, these files contain instructions written in HTML that tell the Web
browser what the Web page should look like.

Second, after downloading the file, the Web browser arranges the text in this
file and downloads and arranges any images referenced by this file. These ele-
ments are positioned according to formatting instructions also found in the file
(Figure 3.2).

The third thing browsers do is display connections to other Web pages. These
other Web pages can be located anywhere on the Internet—that is to say, any-
where in the world. In many Web browsers, these connections, or links, between
Web pages are displayed in blue and are underlined. The HTML document itself
indicates where these links to other pages should appear. The browser’s job is to
know when the user has clicked on a link and to then retrieve the document (the
file) on the Internet, and then format and display the elements in the document so
that they appear in the Web browser.

Internet
file _ file find file
file
download fil

Web browser on your computer

Figure 3.1 Downloading a file found on the Internet.

HTML document browser arranges elements

start using a bold font

text: picture

Enjoy acup of javal

instruction:
return to a normal nonbold font

instruction:
go to the next line

instruction:

instruction: Enjoy acup of javal

put a picture here

final document asit
appears in the browser

Cf/——————— Nelacope: chapl. html

EE

==t & 5| 2] & & &

Bk Forwerd] Home Fetomd meges Men Frint Firel Stop

What 'z Wow? | What'eCec1?| Handtash | met Search | Mt Dbectary| Mawsgraups |

Erjovaann of k!

Icr

]

]

Figure 3.2 Positioning (] Foviment: o .

G

text and images according to formatting instructions found in an HTML file.

How Traditional Web Browsers Work

If you've ever looked at the source document for a Web page or have created Web
pages yourself, you know that Web pages are defined using HTML. These HTML
documents contain the text to display in a Web page. Sprinkled in with this text
are special formatting instructions written in HTML. These formatting instruc-

tions are placed between left and right angle brackets, like this:

<a formatting instruction would go here>

WEB CONTENT

21

WEB PROGRAMMING BASICS

22

By the Way

For example, in the file shown in Listing 3.1, we placed HTML formatting state-
ments around the text “Enjoy a cup of java!” so that this text appeared in bold.

Listing 3.1 A simple HTML file.
<bol d>

Enj oy a cup of javal

</ bol d>

Images are kept in separate files from the HTML document. To indicate that a
picture should appear in a Web page, the Web page creator can indicate where the
Web browser should look to find the computer on the Web that contains the image
and what file this image is in. In the preceding example, the image was on the
same computer and in the same directory as the HTML document itself. That al-
lowed us to simply name the file containing the picture. The Web browser then
knew where to look. If we wanted to indicate that the picture existed on a differ-
ent computer, we would need to supply the address for that computer, like this,
for example:

<ing src="http://ww.bl uehorse. conf nypics.gi f">

Knowing how to write HTML documents is not strictly necessary for pro-
gramming in Java. In fact, a thorough discussion of using HTML to design
Web pages is beyond the scope of this book. However, if you are unfamiliar
with HTML and would like to know more, many books are available to help
you get started with HTML. We humbly recommend Learn HTML on the
Macintosh, by Dave Mark and David Lawrence. There are also a number of
sites on the Web that explain what HTML is all about. Check out Appendix
G for a listing of these sites.

As the Web browser reads through the downloaded file containing the for-
matting instructions and the text to display, the browser sets aside enough space
on the screen to display the elements in the document. The browser leaves
enough room to draw the images and flows the text around these images; the
browser spaces the lines of the text far enough apart to accommodate the appro-
priate font; the browser leaves enough room in the display for tables; and the
browser takes care of arranging any other elements as appropriate (Figure 3.3).

Web page

Welcome to my Web page!

Come back

picture on!

table

Figure 3.3 Schematic of a Web page with a variety of elements arranged by the Web
browser according to the HTML instructions in the document and with enough space for
each element.

Once the Web browser arranges the images, text, and links, all the user can do
is view the document. The elements just sit there, passively, until the user clicks a
link and the browser displays a new page. While this is actually quite a feat, such
a Web page still lacks the interactivity that people have come to expect from using
a computer.

Interactivity

Recently, Web browsers have become capable of handling another type of ele-
ment: a software application. Just as it sets aside a region of the screen to display
images and text, a Web browser can now also set aside a region of the screen in
which to display the user interface for an application. With an application, a Web
page is no longer passive but can offer any type of capability you're used to from
the desktop.

For example, as the comet Hyakutake recently made its (mostly fuzzy) ap-
pearance in the nighttime sky, a number of excellent Web pages showed diagrams
of the comet’s path through the Solar System and through the backdrop of stars as
seen from the earth. While this was informative, a Web page created using Java
could have made such pages come alive. Rather than showing printouts of plots
made with desktop-bound software applications, a software application written
in Java could have been inserted into a Web page. This would have allowed any
Web user to make his or her own plots, animate the flight of the comet, simulate
how the comet would appear if it increased or decreased in magnitude, and so on.

INTERACTIVITY

23

WEB PROGRAMMING BASICS

In other words, Java applications on the Web can provide the immediacy, inter-
activity, excitement, and power you've come to expect from the software applica-
tions sitting on your own Mac’s hard drive.

What does it mean to include a software application in a Web page? In many
ways, the software application referenced by an HTML document is treated just
like any other element on a Web page. As with images, software applications are
kept in separate files. The Web page creator indicates that a software application
should be part of the Web page by using an HTML tag called appl et. Here’s an
example (the specifics of this appl et tag will be explained in much greater detail
later in this book):

<appl et code=Hel | oWorl d. cl ass wi dt h=250 hei ght =50> </ appl et >

The name of the file containing the application to run is given after the words
code=and, in this example, is named Hel | oWor | d. cl assWhen the Web browser
encounters an appl et tag, it downloads the file containing the application refer-
enced by this tag from the Internet (Figure 3.4).

As with other Web page elements, the browser sets aside enough space on the
screen to display the user interface for the Java application. The amount of space
required by the application is initially provided in the appl et tag. (That’s what
the width and height keywords specify.) The browser flows the text and the other
Web page elements around this application as necessary to format the rest of the
Web page (Figure 3.5).

Web browsers that are capable of running software applications written in
Java are said to be Java-enabled. Java-enabled Web browsers include Netscape
Navigator 2.0 and Sun’s HotJava, and soon all Web browsers are likely to incorpo-
rate support for Java applications.

I nternet

file

find application

application

file

download applicatio

Web browser on your computer

Figure 3.4 Downloading a Java application found on the Internet.

24

JAZZING UP YOUR WEB PAGE

Web page

Welcome to my Web page!

Come back

picture >on!

user interfacefor a
Java application

table

Figure 3.5 An application’s user interface as part of a Web page.

When a traditional Web browser has downloaded an HTML document and
formatted the display, that’s the end of the story. However, once a Java-enabled
Web browser has downloaded a Java application, that’s only the beginning! After
the Java application is downloaded, the Web browser runs the Java program—just
as if you, the end user, started a program by double-clicking an icon on the Mac.
So, now you can interact with the application that is part of the Web page just as if
you had installed the application on your Mac’s hard drive. Just as a store-bought
application can be anything at all, so, too, can a Java application be whatever the
programmer has imagined.

Jazzing Up Your Web Page

In addition to writing full-fledged applications, there are also other ways for add-
ing pizzazz to your Web page. Some of these ways include using extensions to
Web browsers that allow you to create animation (such as with a product called
Shockwave). Some extensions allow you to perform simple tasks such as finding
the average of a set of numbers (by using a scripting language such as JavaScript
or VisualBasic Script).

Some of these options make a Web page more interactive; some only provide
a “special effect”—which is nice, but that’s as far as these options go. While these
Web page elements have their places and, in some situations, may do the job just

25

WEB PROGRAMMING BASICS

26

fine, it's important to know that these other approaches are not programming lan-
guages. Only Java is a complete programming language for the Web. The next
section explains why this distinction is so important.

Reasons for Programming

People have long dreamt of achieving what today’s computer technology makes
possible. Back in the 1800s, mathematicians and inventors theorized about ma-
chines that could perform complex calculations and follow instructions to solve
problems. Since the 1940s and 1950s, when modern computers were first in-
vented, people have written programs to perform tasks that would have been im-
possible without these computers and the programs that controlled them. These
tasks range from landing a man on the moon to creating feature-length movies
with computer-generated astronauts and cowboys.

You might have a more pressing need to write a program than space explora-
tion or movie-making. You might want to find a simple way to calculate your
mortgage payments. You might want to maintain your favorite recipes in a home-
grown database. You might want to create a nifty computer game you’ve dreamt
up. Or you might want to promote your company on the Web by creating a soft-
ware application that illustrates and perhaps even sells your company’s products
or services.

All of these examples require that you control the computer to make it do the
things you want. To control the computer, you need to write a program. If you
want to write a spreadsheet application, adventure game, drawing program, or
any other software application, there is no other way to do it. If you're new to pro-
gramming, you'll find that writing programs and making the computer do what
you tell it to do can be a fun-filled, exciting, and rewarding experience.

What Is a Program?

A program defines the exact steps that a computer must follow to perform some
action. For example, if you wanted to explain to a person (rather than to a com-
puter) how to call for help in an emergency, you might say

e First, pick up a telephone handpiece.
e Then, dial 911.

These instructions are concise and explicit. You need to do the same kind of thing
when you write computer programs.

WHAT IS A PROGRAM?

For a more computer-oriented example, check out the following. If you
wanted to add some numbers, it would be nice to be able to create a file for the
computer that read

H , Conputer!
Do me a favor. Ask nme for five nunbers, add them then
tell nme the sum

These instructions are understandable to an English-speaking person. Com-
puters, however, don’t understand English. Instead, computers understand some-
thing called, naturally enough, machine language. So, if you want to tell a
computer what to do, you need to tell it what to do in machine language.

Unfortunately, machine language is difficult for people to speak and under-
stand. Machine language is written using only 1s and 0s, and people don’t usually
want to communicate using only 1s and 0s. They want to use words. So, instead,
programmers perform the following steps.

First, they use a programming language, such as C, Pascal, or Java, to write
out words that describe how the program should work. Learning a computer
language is somewhat analogous, in its objective, to learning to speak a foreign
language. For example, if you want to communicate effectively when you are in
Rome, you need to learn Italian. Similarly, if you want to communicate instruc-
tions to your computer, you need to learn a programming language.

After a programmer has used a programming language to describe how a
program should work, the programmer must compile the program. To compile a
program means to turn the C, Pascal, or Java instructions into machine language.
A compiler knows how to perform this translation from words to 1s and 0s. Com-
pilers save you, the programmer, from needing to speak in 1s and 0s yourself.

By writing in a programming language, programmers bridge the gap be-
tween people and computers (Figure 3.6). Programmers can write in a combina-
tion of English and special words and symbols to tell computers what to do. This
book will teach you all about writing in the Java programming language. When
you write Java programs, you'll be telling the computer exactly what to do!

Note that even though Figure 3.6 shows part of a program written as if it were
in English, this is not quite how Java programs look. You’ll see soon what pro-
grams do look like when you start programming in Java in Chapter 5.

27

WEB PROGRAMMING BASICS

28

part of a program machine language
display atext field 110010100111100
ask the user to enter 101110010100110
anumber) 0110001001
multiply the number compile .
by 2 e

Figure 3.6 Bridging the gap between people and computers: Programmers write in a
programming language; compilers translate this to 1s and 0s.

How Is Java Different from HTML?

If you're familiar with HTML, you may be saying to yourself, “I've written HTML
documents that also tell the computer what to do—how to format text, how to lay
out a table, and more. Is a software application just a glorified HTML document?”
Not quite. Computer languages such as Java address a different need than
HTML. HTML is tailored to one specific task—page formatting. However, you
cannot use HTML to store data, perform calculations, or communicate with other
parts of your computer or network. For example, it would be impossible to use
HTML, and only HTML, to perform even simple tasks such as calculating the area
of a triangle, drawing a squiggly line as the user moves the mouse across the
screen, or creating a game of Tetris. In Java, these things are easy. Some of these
objectives are easier to achieve than others, of course—Tetris being a little more
difficult than calculating the area of a triangle. The point is that these examples
are impossible to accomplish in HTML but are quite natural to implement in Java.

Other Programming Languages

Java is not the first programming language to come along. The most popular lan-
guages of the recent past include BASIC, FORTRAN, Pascal, C, and C++. Each of
these languages was developed with particular objectives in mind, and each was
quite successful in achieving these objectives.

For example, BASIC (Beginner’s All-purpose Symbolic Instruction Code) was
designed in the 1960s and, as its name implies, was meant to be a simple language
for people new to programming. While the original BASIC language is not used
much today, there are quite a few people programming in a Microsoft variant of

OTHER PROGRAMMING LANGUAGES

BASIC called Visual Basic. (The main reason for this is that Microsoft Chairman
Bill Gates loves BASIC.)

FORTRAN (FORmula TRANslation) was invented in the 1950s and is adept
at manipulating and displaying large values and writing mathematical equations.
Engineers and scientists still use FORTRAN a lot for solving problems in their
fields.

Pascal was named in honor of the 17th-century French mathematician Blaise
Pascal. The goal behind Pascal was to create a language that encouraged com-
puter science students to write good structured programs. Pascal was introduced
in the 1970s, and it was hot for a time. It’s still in use today, although it’s not as
popular as it once was.

Developed at AT&T, C was named (believe it or not) from the third attempt at
creating a language. (The first was named A; the second was named B.) C pro-
vides a kind of combination of being able to program at a high level while still
being able to get down to the details of machine language and manipulate 1s and
0s directly. C is good for writing system software, and the Unix operating system,
for example, is usually implemented in C.

All of these programming languages basically encourage the programmer to
write a big list of instructions for the computer to follow. This approach works
fine for simple programs. Over the years, however, programmers began to realize
that while these languages were powerful, they did not always work well when
writing large or complex programs.

In the 1980s, a new way of thinking about software began to emerge. Pro-
grammers found a better way to program complicated applications such as draw-
ing programs, spreadsheets, scientific simulations, and so on. This better way was
to think of the application not as one big list of instructions, but as a collection of
objects. The next chapter gets into the details of what objects are. For now, here’s a
simple example. Suppose you want to write a program that represents something
in the real world—say, the flow of traffic through your city. Your program will
have streets, cars, traffic lights, drawbridges, and everything else that affects the
flow of traffic. If you were using a program that supported objects, each of these
real-world elements—the streets, cars, and so on—would be represented by an
object in your program.

C++ is a language that uses objects. (It was named C++ as a way of indicating
it was incrementally better than C.) While C++ was not the first language to use
objects, many programmers have used C++ in recent years because they already
knew C, and C++ is based on C. It was therefore easier for experienced program-
mers to figure out C++ than to learn a new language altogether.

29

WEB PROGRAMMING BASICS

By the Way

30

Developing Software Using These
Other Languages

There are many other programming languages than the five just mentioned, and
you may have some background in one of these other languages. The basic char-
acteristics of just about any language that came before Java are the same, however.
Almost all of the pre-Java languages (including BASIC, FORTRAN, Pascal, C, and
C++) were built for a world in which the application that resulted from compiling
a program would run on one (and only one!) type of computer. If you wanted to
run the application on a different type of computer, you would have to recompile
the program for that type of computer. This fact is crucial to understanding one of
the primary reasons for Java’s existence.

Every computer is based on a particular chip. In fact, chips are so central to a
computer that computers are often identified by the kind of chip they contain:
People talk about a “386,” a “486,” or a “Pentium,” for example. However, chips
know nothing about C, Pascal, or any other language; they only understand ma-
chine language. What’s more, each type of chip speaks its own brand of machine
language.

With each type of chip speaking a different machine language, a programmer
must compile the same program separately for each type of chip on which the
application will run. Sometimes, the programmer must even change the program
a little to get it to run correctly on a new type of chip. This process is known as
porting.

Now, so far, by talking about computer chips, we’ve just been considering the
hardware side of things. If you’ve used both Windows and the Mac, you'll notice
there are many differences, both large and small, in how applications look. For ex-
ample, the symbols along the top of the windows are different. Windows 95 reacts
to two mouse buttons, while the Mac reacts to only one. And, if you've ever pro-
grammed in these different environments, you know that the way you create a
window on the Mag, for example, is nothing like how you create one in Windows
95. Your code looks completely different. This means that the code that creates
your user interface (the way in which the user interacts with the application by
using windows, buttons, checkboxes, and so on) must be rewritten and compiled
every time you port your application to a new operating environment (Figure 3.7).

Windows 95, Windows NT, the Mac OS, Solaris, OS/2, Linux, and DOS are all
examples of operating environments. Pentiums, SPARCs, 486s, and Power-
PCs are examples of computer chips.

WHY JAVA IS PERFECT FOR THE WEB

computer computer computer
program program program
version 1 version 2 version 3
compile compile compile
personal computer Power PC running Sun SPARCstation
running Windows theMac OS running Solaris

Figure 3.7 Compiling different programs for different types of chips and operating
environments.

Why Java Is Perfect for the Web

While other languages were created with the intent that programs written in
those languages would be developed for one type of chip and one operating envi-
ronment, the Java language was developed with a different idea in mind. Java’s
creators envisioned the same Java program running on many different types of
computer chips and in many different operating environments—without modifi-
cation.

While writing a program expressly for one type of chip and one type of oper-
ating environment works great when you know what kind of computer the end
user has, this is not a good solution for the World-Wide Web. On the Web, every-
body is using a different computer. If you develop an application and place it on
your Web page, you have no way of knowing who will access this page and its
corresponding application. Will they be Windows NT users? Mac users? Unix
users? OS/2 users? Be Box users? The list goes on and on! In fact, all of these users
will likely access your Web page, and all will want to run your application.

If you develop your application using a traditional language, you’ll have to
create different versions of this program and compile these different versions for
different computers. By contrast, the same compiled Java program runs on any
hardware and software combination (Figure 3.8). This is perfect for the Web, and
this is one reason why Java is so hot. Applications written in Java work on the
Web regardless of the computer that accesses them. Applications written in other
languages do not have this capability.

There are also a number of other reasons why Java is perfect for the Web.
Here are two:

1. It is virtually impossible to write a computer virus in Java. This is much more
crucial on the Web than it is for shrink-wrapped products. When you buy a

31

WEB PROGRAMMING BASICS

32

By the Way

computer
program
version 1
download download downloac
v __ |
per sonal computer Power PC running Sun SPARCstation
running Windows theMac OS running Solaris

Figure 3.8 Downloading the same Java application for different chips and operating
environments.

program in a store, there is some accountability; you know where you pur-
chased it and who was responsible for the software. When you encounter a
program on the Web, you're much less sure of who wrote it, why they wrote
it, and what the program will do. It's great to know that a Java program that
you encounter on the Web will never wreak havoc with your computer.

2. Java programs are small compared with programs written in other languages.

This is important when programs are transferred over the Web. Users don’t
want to spend a lot of time waiting for a program to appear on their comput-
ers. Java helps make this waiting time as small as possible.

What's the history of Java? Java was invented at Sun Microsystems in the
early 1990s. The developers’ original intent was to create a language that
was safe to run (impossible for viruses and easy for programmers to write
error-free software) and that could run on any type of computer. When the
Web came along, people began to realize that Java was perfect for the Web.
When Sun built Java into a Web browser and showed the world what was
possible, Web aficionados were hooked!

You may be wondering where the name Java came from. The name was

hit upon at a favorite cafe frequented by the development team of this new
language.

RUNTIME ENVIRONMENTS

Runtime Environments

By now you might be asking, “How is it possible to run the same Java program on
different types of chips and operating environments when other programs can’t
do the same thing? If different types of chips speak different machine languages,
and if different operating environments have different types of user interfaces,
what makes Java programs so special that they don’t care what chip or environ-
ment they run on?”

The key to making the same Java program work on different computers with
different types of chips and environments is the Java interpreter. What actually
happens is as follows. You write a Java program and compile it, just as you do
with any program written in any language. However, the Java compiler does not
convert your program to machine language specific to the computer on which
you want to run. Instead, the Java compiler converts your program to machine
language that runs on a theoretical machine. This theoretical machine speaks its
own brand of machine language. This theoretical machine is called, appropriately
enough, the Java Virtual Machine (JVM). Figure 3.9 shows this part of the picture.

So where is this Java Virtual Machine? Where does it exist on your Mac? All
you have is the Mac hardware, right? Right! The Java Virtual Machine is imple-
mented in software. It runs as a program—the Java interpreter. Figure 3.10 takes
Figure 3.9 one step further.

The Java interpreter is what is different from chip to chip and operating envi-
ronment to operating environment. It’s the Java interpreter that translates be-
tween the Java Virtual Machine’s machine language and the machine language
spoken by your computer. There’s a Java interpreter for Windows 95; there’s a
Java interpreter for the Mac (for CodeWarrior, it’s the one supplied by Metro-
werks called Metrowerks Java); and so on.

Java program

compile

compiled code ready
to run on the Java
Virtua Machine

Figure 3.9 How Java bridges the gap between people and machine: Java programs are
compiled for the Java Virtual Machine.

33

WEB PROGRAMMING BASICS

34

Java program

compile

compiled code ready
to run on the Java
Virtua Machine

run

the Javainterpreter

your Macintosh
(or any other computer)

Figure 3.10 Why Java can run on any computer: Java programs run in the Java
interpreter, which implements the Java Virtual Machine on your Mac.

The different Java interpreters allow the same Java program you write to run
on different machines. In fact, you can take the same HTML file you used in
Chapter 2 and the same compiled class file generated by CodeWarrior, and you
can run them on Windows 95, Windows NT, Solaris, and anywhere else that a
Web browser with a Java interpreter exists. This is depicted in Figure 3.11.

Figure 3.11 shows the same thing as Figure 3.10 but with the Hell o-
Wor | d. cl assfile being loaded into a Java-enabled browser. You'll work on the
Macintosh while using this book, but all of the Java programs presented here, as
well as all of the Java programs you write, will run just fine on any other computer.

Review

By writing a program, you can tell a computer exactly what steps to perform. You
can make the computer do anything at all. This allows you to create very exciting
Web pages. With Java, Web pages can contain software applications, and brows-
ing the Web becomes a much more interactive and rewarding experience.

Why use Java to write Web applications? Why not use a language that came
before Java, such as BASIC or C? Java is a programming language that is perfect
for the Web. Java is an interpreted language, which means that it can run on any

™,
1“1-

Helloworld.class

¢ ¢ ¢

Java-enabled Java-enabled Java-enabled

Web browser Web browser Web browser

for the Mac OS for Windows 95 for Solaris 2.4
Mac PC Workstation

Figure 3.11 Running the same class file on multiple platforms.

computer that has a Java interpreter. Java is a modern language that uses objects.
It is also impossible to write a virus using Java that can be downloaded over the
Web.

What's Next?

You now have an understanding of how Java fits into the overall Web program-
ming picture. In the next chapter, we’ll look at a programming problem and find a
solution for it that's tailored to Java. You'll learn how to approach Java develop-
ment so that the solutions you plan before you begin writing your programs are
easy to implement in Java.

WHAT'S NEXT?

35

Chapter4
Problem Solving in Java

Writing a computer program is a lot like solving a puzzle. You have to understand
your objective. Often, it’s helpful to be creative. And, perhaps most importantly,
you need a strategy for solving the problem at hand.

When you program in Java, it's important to know how to solve the problem
in front of you in such a way that you can implement your solution in Java easily.
Put more concretely, Java is the tool at your disposal; it's important to know how
to use this tool most efficiently.

This chapter will explain how to solve programming problems in a way that
makes it easy to write Java programs. We'll introduce three terms that you'll be-
come quite familiar with by the time you've written a few Java programs. These
three terms are object, class, and method. You don’t know yet what these words
mean as far as Java is concerned, but you’ll have a pretty good idea by the end of
this chapter.

While introducing these terms, we'll also cover a few Java keywords so that
you can begin to see how to program in Java. However, we won’t compile any of
these programs until the next chapter.

Before we examine how to solve problems in Java and discuss what objects,
classes, and methods are, let’s consider what you’ll experience as a programmer.

What It’s Like to Be a Programmer

Programming is an extremely rewarding experience. When you program, you
find ways to structure your ideas that are both logical and creative. Even though
both the programs and the computers that programs run on are based on logic,
that does not mean that programming is a science.

An important part of programming is recognizing that there is not necessarily
a “right” or “wrong” way to write a program. Many times, the right way simply
means that the program behaves as you expect it to. However, while this is often
the case, you'll come to realize that some Java programs are “better” than others
in terms of how easy they are to maintain, how fast they run, and how efficiently
they use the resources of the computer on which they run. This book is filled with

37

PROBLEM SOLVING IN JAVA

38

Definition

examples that help show you how to write fast, efficient programs that are easy to
maintain. Keep in mind, however, that your primary concern is always going to
be whether the program does what you intended it to do.

Why learn how to approach Java programs before you learn the language?
Why not just jump in and start programming? One of the most crucial lessons to
learn in programming is that the better prepared you are, the more quickly and
easily you'll be able to write your programs. Examples abound in real life with re-
gard to other activities. For example, architects create blueprints before the con-
struction crew begins erecting the building. Pilots plot their courses before they
take to the skies. Doctors plan out an operation before they place the patient
under anesthesia. So, too, as a programmer, you should plan your application be-
fore you start writing code. In addition to teaching the Java language, this book
will teach you how to plan your programs before you begin clicking away at your
keyboard.

Let’s discuss the programming process and learn how to plan your programs.

The Programming Process

One way to plan out your program is to answer four questions, as follows.
* Question 1: What will the program do?

For some programs, this might seem like a simple question to answer, but
there is more to this question than first meets the eye. Answering this question in-
volves clarifying your objectives for the program and considering what your pro-
gram will look like to the user when your program runs.

What your program looks like when it runs and how users interact with
your program is referred to as a program’s user interface. If the program
takes advantage of graphical elements, such as windows, buttons, and pic-
tures, the user interface is called a graphical user interface (GUI, pro-
nounced “gooey”). Programs that don’t use a GUI, but instead write
characters to the screen without taking advantage of any graphics capabili-
ties, use a character-mode user interface.

* Question 2: What are the different parts of your program?

Answering this question means first thinking about how your program will
be put together. You might have parts of the program that perform calculations;

DESIGNING YOUR PROGRAM

you might have parts of the program that display text fields in which the user en-
ters numbers; other parts of your program might draw windows that display re-
sults calculated by the program.

* Question 3: What is the sequence of tasks your program will perform?

All programs perform a sequence of tasks. It's important to write out this se-
quence of tasks before you get involved in writing Java code so that you'll know
what code you need to write in the first place.

* Question 4: What data will your program need?

Most programs you write will need to keep track of certain data. Once you
know what your program will do and how it will do it, you can think about what
data you'll need to keep track of.

This chapter will explain what each of these questions means and how you
can go about answering them. Once you have answered these four questions, you
will be ready to actually write your program. Starting with the next chapter, we’ll
begin to write working applets using Java.

Let’s look at a few examples to see how you can go about answering these
four questions.

Designing Your Program

You can tinker with an applet called SimpleDraw by going to the Learn Java
Projects folder. Open the SimpleDraw folder and drag and drop the file named
Si npl eDr aw. ht nl onto the Metrowerks Java icon. You can create squares and cir-
cles in different colors by selecting the shape to draw and the colors in which to
draw them and then clicking in the applet to create a shape at that location. Figure
4.1 shows a typical SimpleDraw session.

Let’s look at this applet from the programmer’s perspective. There is a lot
going on here, and this little applet illustrates lots of Java features, including user
interface elements, user interaction, drawing, and managing data. (We'll return to
this applet often throughout this book.) How would you go about designing this
applet? If you're unsure, you can always start at question 1 listed earlier, and see
where that takes you. As we work through each of the four questions in the sec-
tions that follow, you'll learn all about objects, classes, and methods, which are
the building blocks for all Java programs.

39

PROBLEM SOLVING IN JAVA

40

== Applet Viewer: SimpleDraw.class

Circle =

applet started

@

Figure 4.1 SimpleDraw in action.

Question 1: What Will the Program Do?

If you had a chance to experiment with this applet, you’ll be able to formulate a
description of this applet that goes something like this: The user interacts with
this simple drawing applet by first indicating which shape to draw. The user has a
choice of drawing a circle or a square. The user can also indicate which color to
use when drawing the shape: red, green, or blue. To select the shape to draw and
the color to use, the user picks from a list of possible options. The user then clicks
in the applet window, and the applet draws the indicated shape at the location of
the mouse click.

Question 2: What Are the Different Parts of Your Program?

Once you can describe the things you expect your program to do, you can start to
plan out how your program will do them. In Java, your program will consist of a
collection of different parts, and each of these parts will have a different task.
Here are the three examples:

1. A spreadsheet applet might consist of cells and formulas. The cells’ task
would be to display numbers, and the formulas’ task would be to calculate
the numbers to display.

DESIGNING YOUR PROGRAM

2. An applet used by NASA (the National Aeronautics and Space Administra-
tion) to send an unmanned space probe to Jupiter might consist of a number
of parts, including the space probe, Jupiter, Jupiter's moons, and the earth.
This applet would maintain space flight information with the probe itself, and
it would use the other parts of the program to calculate the effects of the plan-

ets and moons on the path of the probe.

3. A payroll program might consist of a collection of employees as well as a vari-
ety of graphical user interface elements. The parts representing the employees
would maintain data specific to each employee, and the graphical user inter-
face elements would allow a user to interact with the employees.

Here’s how we might think of these three applets:

Table 4.1 The parts of three sample programs and their tasks.

Part
Spreadsheet cells
formulas
Jupiter Mission space probe

Jupiter
Jupiter’s moons

The earth

employees

Payroll

graphical user
interface elements

Task

display number

calculate number to
display

maintain space flight
information

have an effect on the
space probe’s flight

have an effect on the
space probe’s flight

have an effect on the
space probe’s flight

keep track of employee
data

interact with the
employees

Let’s introduce one word of terminology at this point. Instead of saying that
we want to identify the “parts of the program,” let’s use an official term. In Java,

each of these parts is called an object.

41

PROBLEM SOLVING IN JAVA

42

Objects

Objects represent “real-world” or conceptual parts of whatever it is you are trying
to program. Everything in your Java applet will be represented by an object. You
will always create at least one object for every applet you write because your ap-
plet itself is defined as an object. Objects include all the items in a graphical user in-
terface, such as the windows that appear on the screen, the buttons the user can
click with the mouse, and text fields that allow the user to type in characters. For
our examples given earlier, each cell in the spreadsheet and each formula would be
an object, each moon and planet in the Solar System would be an object, and each
employee and user interface element in the payroll program would be an object.

Objects Equal Data and Behavior

When you use objects, these objects “know” how to take care of themselves. We
alluded to this when we mentioned that each part, or object, had a task. There is
no overall part of your program that controls everything. For example, for the
spreadsheet program, a cell object might use its formula object to determine what
it should display. The formula object would know how to use the data it stores to
calculate the number to display. The cell object would know how to display this
number. For the payroll program, each employee object might know its hourly
wage and how many hours the employee worked that month. The employee ob-
ject would know how to use the values it keeps for the hourly wage and number
of hours worked to calculate the employee’s earned income for that month.

These examples imply that objects consist of two parts: data and behavior.
Figure 4.2 provides a high-level schematic of an object.

Objects equal data and behavior combined; an object’s data and behavior
allow it to carry out its task. As for data, objects need to keep track of the informa-
tion that makes each object unique. For example, each employee object in the pay-
roll program might have a different hourly wage. For the simple drawing
program, each shape that the user draws is an object, and each circle and square

object

data

behavior

Figure 4.2 An object: data and behavior.

DESIGNING YOUR PROGRAM

empl oyee object

hourly wage = $12
hours worked = 40

calculate this month’sincome

Figure 4.3 A specific employee object.

might have a different position on the screen. As for behavior, objects can do
things with their data. What an object can do with its data defines its behavior. For
example, the space probe object in the NASA program might know its current
speed and direction and could calculate where it will be at some future time. Em-
ployee objects in the payroll program could calculate their earned income. Figure
4.3 illustrates how you might think of a specific employee object. This object
would maintain data for a particular employee’s hourly wage and hours worked
this month, and it would provide behavior for calculating the employee’s earned
income for the month based on its data. (In this case, it could multiply the hourly
wage by the hours worked to arrive at the earned income for the month.)

Classes

While answering question 2, what are the different parts of your program, you've
been introduced to objects. You might notice, thinking over some of the candi-
dates for objects provided so far, that some objects are very similar to one another.
For example, for the payroll program, you probably don’t have to provide a sepa-
rate definition for each employee object. Employees differ only by the data they
contain. Suppose you have 100 employees in your company. Each employee
maintains an hourly wage and the number of hours worked. Each employee
knows how to calculate its income for the month. Employees are all likely to look
pretty similar. Employee objects could all be considered to be part of the same
group.

For the NASA program, all the planets are pretty similar, too, when it comes
down to it. They all obey Kepler’s, Newton's and Einstein’s laws. They differ only
in their mass, rotation, distance from the sun, current position, and so on. That is,
they have the same behavior, just different data. All of the planet objects could be
said to belong to the same group, or class, of objects.

In Java, when objects have similar definitions and differ only by the data they
contain, they all belong to the same class. In fact, objects are defined by their
classes.

43

PROBLEM SOLVING IN JAVA

44

Planet class
r—— - - - - — — al
| name |
diameter
| distance from sun |
k= — = a
| determine future position |
L - |

Figure 4.4 The Planet class, which defines a planet in a general way by specifying the
data it will maintain and the behavior it will have.

Here are some examples of classes. For the spreadsheet application men-
tioned earlier, we would have two classes: a Cell class and a Formula class. For
the NASA program, we would have a Probe class, a Planet class, and maybe a
separate Moon class. For the payroll program, we would have an Employee class.

Classes define objects in a general way. A class definition in a Java program
might say something like, “I am an Employee class. All employee objects will
maintain two pieces of data: their hourly wage and the number of hours worked.
All employees will know how to calculate their earned income by multiplying
their hourly wage by the number of hours they worked.” Another class definition
might say, “I am a Planet class. Each planet object will maintain its name, diame-
ter, and distance from the sun. Each planet can determine where it will be at some
future time given its current data and the laws of astronomy.” A schematic for a
Planet class is illustrated in Figure 4.4 (we’ll discuss the employee class later in
this book when we actually implement the payroll applet).

Classes are central to Java programs. Classes define the data your objects will
maintain. Classes also specify the behavior for your objects. You will base all of
your objects on a class that either you define or that comes predefined as part of
Java. Figure 4.5 shows that when planet objects are created, they are based on the
Planet class. Each planet object maintains its own unique data and has access to
the behavior defined by its class.

What's in Your Java Source File?

You've learned that everything in your program is represented by an object, and
objects are defined using classes. In fact, your entire application will consist of a
collection of class definitions. For example, you might have a Java program that
implements the spreadsheet application. This program could be contained in a file
on your Mac. This file would define the classes that you need. First, the file would
contain the definition for the Applet class (all applets contain a definition for an
Applet class); after this, the file would contain a definition for the Cell class;

DESIGNING YOUR PROGRAM

Planet class
r— - - — — — — — A
I name I
diameter
| distance from sun |
F— == — = .
| determine future position |
Lo- - - — . _l

create new objects

planet object planet object
name = Earth name = Mars
diameter = 12,756 km diameter = 6,794 km
distance from sun = 148,000,000 km distance from sun = 228,000,000 km
determine future position (using determine future position (using
the datain this object) the datain this object)

Figure 4.5 Using the Planet class to create individual planet objects.

following this, the file would contain the definition for the Formula class. A sim-
plified outline of this file would be

start definition for the Applet class
Java code that describes the objects created fromthis class
end definition for the Applet class

start definition for the Cell class
Java code that describes the objects created fromthis class
end definition for the Cell class

start definition for the Fornula class

Java code that describes the objects created fromthis class
end definition for the Fornula class

How you write these classes is what Java programming is all about. In fact,
it’s time to look at your first piece of Java code! Here’s how you define a class, de-

void of Java code that describes the objects created from this class:

cl ass Your C assNane{

45

PROBLEM SOLVING IN JAVA

46

You replace Your O assNanswvith the name of the class you want.
Let’s put this into action. How would you define a class for a Romulan War
Bird? You would write the following:

class Ronmul anVarBird {

Asyou might surmise from these two examples of a class definition, Java uses
one symbol to indicate where a class begins and another similar symbol to indi-
cate where a class ends. These symbols are called curly braces:

e The left curly brace, {, indicates where a class begins.

e The right curly brace, }, indicates where a class ends.

All of the Java code that describes these classes would be placed between the
left curly brace ({) and the right curly brace (}) for each class. Even empty classes
would compile, but they wouldn’t do much because they don’t have any Java
code between their left and right curly braces.

Let’s return to SimpleDraw, identify the classes and objects that will be part of
this program, and define them. As with most programs, this one can be divided
into two broad areas: the user interface and the rest of it. What are the elements of
the user interface? To answer that, we can examine what we said the program will
do. We need a way to select the shape to draw, and we need a way to select the
color to use for the shape. We can use a class defined by Java called a Choice and
create two objects out of it. We can click on the applet itself to draw a shape there.
We will also define an Applet class. What about the rest of it? We need a definition
for two shapes to draw: the circle and the square. Figure 4.6 points out where the
objects are in the SimpleDraw applet as well as which classes they came from.

There are three custom classes defined by this program: the applet, the circle,
and the square. Let’s start by looking at the shapes. We can create classes for
these—and you already know how to start to define classes:

class Circle {

}

cl ass Square {

}

The class that will define our applet is an interesting animal, let’s take a
moment to see what an applet’s class definition looks like. We'll create a class

DESIGNING YOUR PROGRAM

EE= nApplet Diewer: SimpleDraw.class —=

class

applet started

[

Figure 4.6 The objects in the SimpleDraw applet.

called SimpleDraw that will take on the roles and responsibilities of being the Ap-
plet class. Here’s how we can define this class:

public class SinpleDraw extends java. appl et. Appl et {
}

In addition to what you saw already for defining classes, this class definition
introduces two new keywords: publ i ¢ and ext ends. The publ i ckeyword indi-
cates that this class can be referenced by any other class (not all classes can be re-
ferred to by any other class, as you'll see in Chapter 10). The ext ends keyword
indicates what roles, responsibilities, and default behavior the class will take on
(as you'll also learn more about in Chapter 10). For now, it’s enough to know this
is how you define an Applet class.

Let’s think about what we have so far. You know that you need to identify the
parts of your application. Each part of your application will be an object. You cre-
ate objects based on class definitions. We’ve even looked at some empty class def-
initions. We defined a class called Circle and a class called Square. We also defined
an Applet class called SimpleDraw. Do these classes do anything yet?

| choice objects created from

Java's Choice class
| Circle w Elue w

- applet object created from
the SimpleDraw Applet

\ L square objects created from

the Square class (the program
will create a new square object
when the user creates a new

-"j-i \ square)
i L circle objects created from the

Circle class (the program will
create a new circle object when
the user creates anew circle)

a7

PROBLEM SOLVING IN JAVA

48

No. Not yet. You have to tell them what to do. That’s the programmer’s job.
So, what do you need to do to create a full-fledged class that does things? You
need to tell the class two things:

1. What tasks the objects based on the class will perform.
2. What data the objects will need to keep track of.

From these two items, you can see how answering our four questions is lead-
ing us along in Java development. In fact, we’re now up to question 3. Now, in ad-
dition to defining classes, you'll learn about methods and more about creating
objects.

Question 3: What Is the Sequence of Tasks Your
Program Will Perform?

We've already determined a great deal from answering question 1, What will the
program do? Based on what we’ve said so far, there are two parts to the simple
drawing program: the user interface and the rest of it. Each part has its sequence
of tasks, and these tasks do not require more than a few steps each.

Making a Task List

First, the simple drawing program will need to arrange its user interface—that is,

1. Display selections for shape types and color.

2. Make the applet’s window big enough to draw in.
Second, when the user clicks in the applet, the program will

1. Determine the shape type to draw and color in which to draw it.
2. Create a new shape object for the appropriate shape type.

3. Draw this new shape object at the location clicked in the proper color.

Defining Behavior with Methods

How do we define an object’s behavior? To do this, we tell the class the approach,
or method, its objects will use to perform a particular task. We describe behavior
by writing out a sequence of instructions. In Java, this sequence of instructions
that define a particular task that an object will perform is officially called a
method. For now, all you need to know concerning methods is that they define an
object’s behavior.

DESIGNING YOUR PROGRAM

Creating Objects

Step 3 in the task list just given provides a good illustration of where and when a
program creates objects. The following three screenshots show a typical user’s
progression through the simple drawing application.

Take a look at what's going on, starting in Figure 4.7. When the user draws a
new square by clicking on the applet, the simple drawing program creates a new
object based on the Square class. The program fills in the data for the Square class
(its position and color) and draws it on the applet.

As shown in Figure 4.8, the user next clicks on the applet with the circle
choice selected. The program creates a circle object based on the Circle class, fills
in the circle object’s data (position and color), and draws it on the screen.

The user can continue on indefinitely. Figure 4.9 shows the user creating a sec-
ond square. The program now creates a second square object based on the Square
class. This second square object will contain the data that makes it unique and dif-
ferent from the first square object. It will have a different position on the screen,
maybe a different color. And the user can keep on going. In fact, the user can cre-
ate as many shapes as he or she desires!

Thus, the Square and Circle classes act like templates or rubber stamps to
“stamp out” shapes when the user draws on the applet. Notice that the same

=[d= Applet Viewer: SimpleDraw.class

| Square + | | Red |

applet started

=]

Figure 4.7 SimpleDraw: The user has just drawn one square by selecting “square” from
the shape selection choice and clicking on the applet.

49

PROBLEM SOLVING IN JAVA

= Applet Viewer: SimpleDraw.class

Circle = Green w

Figure 4.8 SimpleDraw: The user has now selected “circle” and has drawn a circle by
clicking on another location on the applet.

= Applet Diewer: SimpleDraw.class ==

y Square w Green w

Figure 4.9 SimpleDraw: The user has here drawn a second square by selecting
“square” from the shape selection choice and then clicking on the applet.

50

DESIGNING YOUR PROGRAM

shape classes are used again and again to stamp out different objects. Another
analogy would be a cookie cutter. You wouldn’t use a cookie cutter once and then
throw it away! Instead, you would use the same cookie cutter over and over, cre-
ating as many cookies as you wanted (or, at least, as many cookies as you had the
dough for!). Each cookie would be decorated a little differently, blue sprinkles on
one, red sprinkles on a second, green on a third, but each cookie would be essen-
tially the same.

With our drawing program, our Square class and our Circle class act like
cookie cutters. Since classes are like cookie cutters, we can use them to create as
many squares and circles as we need. In particular, we can stamp out a new
square or a new circle every time the user draws a new shape by clicking on the
applet.

Each object will look to its class for its behavior. Each object will also look to
its class to see what data it should keep track of. This is illustrated in Figure 4.10.

This diagram shows what’s happening conceptually with classes and objects,
but what’s going on in the computer with classes and objects? Here’s the basic
idea: Classes are part of your application; you define classes using Java code. This
is shown in Figure 4.11.

When you create objects, you are asking the computer to set aside some mem-
ory to hold the data for those objects. For a circle object created from the Circle
class, that data might include the circle’s position on the screen and its color. The
computer would set aside the appropriate amount of memory to hold this data,
based on what the class indicated every object needed to keep track of. This is
shown in Figure 4.12. (This figure contains a slightly simplified diagram. While
both your application and the data created by your application are maintained in

classCircle{
datato maintain in the objects
behavior for the objects

}

look to stamp out a look to

the class new object the class
for the for the answer
answer circle object

what data should | keep track of?

what can | do?

Figure 4.10 What happens conceptually: Objects look to their classes for their behavior
and to see what data they should maintain.

51

PROBLEM SOLVING IN JAVA

Your Application

Circleclass

| color

Figure 4.11 Diagram showing that classes are defined in your application.

Your Application

Circleclass

position on the screen |
color |

Your Computer’s Memory

that Maintains Data

circle object
x=10,y=10
color = blue

circle object
x=125,y=70
color =red

Figure 4.12 What goes on in the computer: Objects are created in your computer’s

memory.

your computer’s memory, they are maintained in separate regions of memory.)
Note that your application can fill up memory with as many objects as it needs.
Some programs are simple enough that they never need to define a class other
than an Applet class. In these cases, the applet itself can handle all the details of
the program. The HelloWorld applet that you saw in Chapter 2 is an example of

an applet that does not use any additional classes or objects.

To recap, here’s what you know so far: You need to define classes. Your classes
will be used like cookie cutters to stamp out objects. Each object will maintain
data that makes it unique. Your classes will provide the instructions that tell ob-

jects how to behave. These instructions will be contained in methods.

You also know that objects keep track of the data that makes them unique.

This leads us to question 4.

52

DESIGNING YOUR PROGRAM

Circle class
r— - - — — B
| position on the screen |
| color |
F=— = — — - |
| draw |
L—_ - - |

Figure 4.13 The Circle class.

Question 4: What Data Will Your Program Need?

Based on our discussion of question 3, we need to know two pieces of information:

1. The color to use for that shape object.

2. The location where the user clicked.

The Circle class, for example, might look like what is shown in Figure 4.13.
This class would specify that a circle object should maintain two pieces of data: its
color and where it should appear on the screen (that is, where the user clicked).
The circle object’s behavior, as supplied by the class, includes being able to draw
itself at the proper location and in the proper color. The Square class would be
similar to this, but it would draw differently.

Let’s also give a bit of thought to the Applet class. Remember, each applet
contains at least one Applet class definition. Based on what we said the simple
drawing application would do, the Square class and Circle class provide only part
of the functionality for this application. The rest must be supplied by the applet
class. For example, Figure 4.14 shows a possible Applet class.

As you can see, the applet will need to work with the shape classes to make
the program work. This is typical in a Java application, where different classes im-
plement their own parts of the program and work together to get the job done.

The Final Result

The outcome of answering the four questions of what your program will do, what
the different parts of it are, what tasks it will accomplish, and what data it needs is
a game plan for writing your Java program. Once you know where you're going,
you can get there much more easily!

53

PROBLEM SOLVING IN JAVA

54

Circle class

| position on the screen |
SimpleDraw class (Applet) —p | Color |
.

| current color | | draw |
| current shape |

|

| create user interface
detect user click
|

Square class
create shape ————| o o !
L 4 | position on the screen |
________ | color |
== = — - |
| draw |
L —_ — - — — — .

Figure 4.14 An Applet class for the simple drawing program that interacted with the
Square and Circle classes.

Review

This chapter opened by comparing writing a computer program to solving a
puzzle. You now have an understanding of how to go about solving a program-
ming puzzle. Before you begin writing your Java applet, it's a good idea to plan
out your program. One way to proceed is to answer the following four questions:

* Question 1: What will the program do? Answering this question involves deter-
mining what users will see when they run your program.

* Question 2: What are the different parts of your program? Answering this question
leads to determining the classes you’ll define for your program and what ob-
jects they will create when the user runs your program.

® Question 3: What is the sequence of tasks your program will perform? Answering
this question leads to finding the methods for your classes. Methods contain
the instructions the computer must follow to make your applet do the things
you want it to do.

* Question 4: What data will your program need? Answering this question helps
you plan out what data you'll keep track of in your objects.

Let’s review some terminology before moving on:

* Objects describe the different parts of your application. Each object maintains
data that makes it unique and has access to behavior that enables the object to
perform calculations and do things.

e Classes act like cookie cutters and stamp out objects. Classes define what data
an object should maintain and what behavior it has.

* Methods are sequences of instructions that give your objects behavior. You'll
learn much more about methods in upcoming chapters.

You've also learned a small but highly important bit of Java syntax and gram-
mar: You now know how to define a class (albeit an empty class). You know how
to design objects, thinking through the data they should contain and the behavior
they’ll have. (You'll see more examples throughout this book to get you into the
swing of things.) You define classes in your program by writing the word cl ass
followed by your class name, and you indicate the start and end of the class using
a left and right curly brace. You place all your Java code that describes what data
the object should keep track of and what behavior it has between the left and right
curly braces.

All of your Java applets will be a collection of some number of classes—at
least one since you always need a class that takes on the roles and responsibilities
of an applet (you'll learn what some of these roles and responsibilities are in the
next chapter, and you'll learn more as you progress). You might have one Applet
class that defines your entire program; more complicated programs might define
many additional classes.

What's Next?

Once you plan out your program, you're all set to write Java code. In fact, it's time
to take off the gloves and really get to it! In the next chapter, you'll take a look at
how to write, edit, and test a Java program by implementing the simplest applet
possible and learning what the Java development cycle is all about. You'll also
learn how to write messages to the Java Output window so that you can see
what’s going on as your program runs. In other words, you're about to write your
first applet!

WHAT'S NEXT?

55

Chapter 5
The Development Cycle

Now you're all set to go. You know how to approach the design of your applet.
You know to first answer four basic questions, starting with determining what
your applet will do. You’ve been introduced to the terms class, object, and method.
You've learned that your applet consists of classes, that classes define sets of in-
structions called methods, and that classes can be used as templates to create ob-
jects. Objects maintain data that make individual objects unique, and they look to
their classes for their behavior.

Once you've planned out your applet, the next step is to write the program.
This means programming in Java by defining classes, creating objects, and writ-
ing methods.

This chapter will introduce you ever so gently to Java programming and the
Java development cycle. We'll write a simple program by defining three empty
classes. In fact, we'll start so simply that, at first, our three classes will not even
define any behavior or data. You'll learn how to begin a program, edit a program,
compile it, and run it, and you'll see what happens when the compiler complains
about your program due to typos. You'll also learn how to write a simple message
to the Java Output window to help you see how your program is working.

An Overview

Having passed the planning stage, you are ready to write the program. You’ll find
that you iterate through a particular cycle with every program you write. Pro-
grammers refer to this cycle as the “development cycle.”

A development cycle is made up of the steps required to develop a Java ap-
plet. These steps include creating a file to hold your program, editing the file to
create your classes and methods, running and testing your program, and making
changes to your program as necessary.

The reason that developing in Java (or in any programming language, for that
matter) involves a development cycle is that programs rarely, if ever, work cor-
rectly on a programmer’s first attempt. Programs are usually too complex to write
all in one shot and get working the very first time. That is, instead of a one-time

57

THE DEVELOPMENT CYCLE

createafileto | gl\yrite/edit

hold the program the program
not yet
e e
pertectly!| rogram compile the
(doesthe program
program work?)
& run the 4/
program

Figure 5.1 The development cycle in action.

progression that involves writing the program, compiling it, running it, and then
distributing thousands of copies, programmers repeat these development steps as
often as necessary, rewriting and editing the program, compiling again, running
again, and then—you guessed it—editing, compiling, and so on, until it all works
as intended. Figure 5.1 shows this cycle in action.

As we've already covered, the more you plan out your program, the better off
you'll be because you’ll increase your chances of having your program work in
fewer attempts. This, in turn, will save you hours of programming time and con-
fusion. The less debugging you have to do, the happier you'll be as a programmer.

Definition
Debugging is the process of removing the “bugs,” or problems, in a pro-
gram. The term comes from the early days of computers when problems
arose because of actual bugs (ants, spiders, and so on) that got into the big,
room-sized computers that scientists and engineers then used. In those days,
when you said you were debugging your program, you weren’t kidding!

Organizing Your Files

Before you write your first program, let’s take a moment to consider what files
you’ll need.

Source File

Your Java program will be contained in a text file that you'll work with directly.
You’ll open this file and type in your Java program. If you want to change the pro-
gram, you'll edit this file.

58

ORGANIZING YOUR FILES

The file that contains your Java program is called your source file. The Java
instructions contained in this file are referred to as your source code. (The main
purpose of this book is to teach you how to write Java source code—that is, what
to put inside your Java source files.) All of your Java source files will end in the
file extension . j ava

Project File

Since your program can be contained in more than one file, CodeWarrior provides
a way for organizing your different source files into one project. You'll need to
create a project for your Java program when using CodeWarrior, even if your pro-
gram is contained within one file. (You've already seen project files in Chapter 2,
and this chapter will review how they work.)

HTML File

To run your applet, you need to define a Hypertext Markup Language (HTML)
file to invoke your applet. This can be a very simple one- or two-line file that uses
the <appl et >and </ appl et >tags, as we'll explain.

Compiled Class File

Once you've written your Java source code and defined a project file for
CodeWarrior, you can compile your program. As discussed in Chapter 3, compil-
ing a Java program means generating instructions that are ready for the Java in-
terpreter to execute on your computer.

When you compile your program, the compiler creates a new file that ends in
the extension . cl ass The compiler will create one . cl ass file for each of the
classes you've defined, even if you have defined multiple classes within the same
. j avafile. For example, suppose you have a Java source file named MyCl ass. j ava
that contains two class definitions, one for a class named MyClass and another for
a class named YourClass. When you compile this program in CodeWarrior, the
compiler will create two new files (or will overwrite these files if they already ex-
ist). The first file the compiler will create is a file named M/Cl ass. cl assand the
second is a file named Your O ass. cl assFigure 5.2 diagrams this example. The
files generated by the compiler that end in the extension . cl assare known, as
you might expect, as class files or compiled class files.

59

THE DEVELOPMENT CYCLE

Java source file named Myd ass. j ava

(class named MyClass)
C class named Y ourClass)

Fig

60

ure 5.2 Creating compiled class files.

Detail

compile

classfilenamed Myd ass. cl ass

classfile named Your Cl ass. cl ass

You might hear some Java programmers talking about “bytecodes.” Byte-
codes refer to the instructions in the compiled classes. These are the machine
language instructions contained in the files that end in . cl ass

An Example: The Simplest Applet

Let’s take everything we’ve learned so far and proceed through the development
of a simple Java program that displays a window on the screen. For this first ex-
ample, you'll go step by step through each word and symbol. By the end, you’'ll
have written your first applet.

First, let's answer the questions set forth in the previous chapter. This will
allow us to plan out our applet.

Question 1: What will the program do? The program will display a window
on the screen.

Question 2: What are the different parts of your program? All we have to do is
display a window, so the only part of the program we need to think about is the
part that does this one thing. We already know that every program is made up of
at least one class: an Applet class. One of the things that an applet can do by de-
fault is display a window on the screen. This makes our task quite straight-
forward. All we need to do, then, is create an Applet class. We'll call our Applet
class SimplestApplet. This program is also simple enough that we do not need to
create any objects.

Question 3: What is the sequence of tasks your program will perform? There
is only one task: display a window.

Question 4: What data will your program need? This program will not need
any data.

So, how do we create a class? You already know how to do this first step from
the previous chapter. To define a class in Java, you write the word cl assfollowed

AN EXAMPLE: THE SIMPLEST APPLET

by the name of the class. We can call our class anything we want to, but, as men-
tioned, we'll call our class SimplestApplet. We’ll also indicate we're creating an
applet by using the keywords introduced in Chapter 4: publ i cand ext ends (Just
what these keywords are doing will be explained in Chapter 10. For now, it’s
enough to know this is what you do when you define a class that will take on the
roles and responsibilities of an applet.)

A word about naming classes and methods: In this example, the name Sim-
plestApplet is an arbitrary name. We could also call our class Hello, First-
Example, or Fred. It doesn’t matter. While it might be funnier to call the class
Fred, such a name would not be very descriptive. Someone else reading
your code would have no idea what this class was all about. Therefore, you
should always take a stab at naming the class in such a way that it provides
a clue to its existence.

Defining an Applet class named SimplestApplet, we have
public class SinplestApplet extends java. appl et. Applet {

}

Although our SimplestApplet class does not contain any Java code between the
curly braces, it will compile and run just fine. The Java compiler will understand
that we are defining a class that’s an applet, even though we have not yet pro-
vided any code for this class. We can always change this file later.

Let’s create a file that contains this simple class definition for an applet. Here
are the steps you can follow:

1. Normally, you would create a new project file and a new Java source file in
CodeWarrior to hold your new program. While the full version of CodeWarrior
obviously allows you to do this, the version of CodeWarrior Lite on the CD re-
stricts this functionality. (Metrowerks can’t just give away their crown jewels,
after all.) So, if you do not have the full-blown version of CodeWarrior and in-
stead are using the version of CodeWarrior Lite found on the CD, we have sup-
plied a project file with an empty Java source file that you can use for this
exercise. To find this empty project, go to the Learn Java Projects folder and
open the file 05. 01- enpt ypr oj ect. Double-click Si npl estAppl et . pto start
up CodeWarrior Lite if it's not already running. Open the file to edit by double-
clicking Si npl est Appl et . j avin the project window.

Style

61

THE DEVELOPMENT CYCLE

62

2. Once the empty source window named Si npl est Appl et . j av4Figure 5.3)
appears, type the following two lines into this window (Figure 5.4):

public class SinplestApplet extends java. applet. Applet {
}

3. Compile this Java source file. Select the Make command from the Project menu
(just be certain you have opened the project Si npl est Appl et . jto enable this
menu option). Executing this command creates the type of folder and file
you've seen before: The folder is named SimplestApplet, and the compiled
class file within this folder is named Si npl est Appl et . cl as&Figure 5.5).

To execute this applet, you have to supply an HTML file to drop onto the
Metrowerks Java application icon. Once you perform this drag-and-drop opera-
tion, your applet will load and run automatically. We’ve already supplied an

=[I=——— SimplestApplet. java

Bl

i <]

MEIE] [Line: | | |l

Figure 5.3 The empty Java source file, ready for your code.

LE|
(i |

=[[I=———— SimplestApplet. java

plubl ic class SimplestApplet extends java.applet.Applet {
¥

o]

MEE| [Line: 2 G M &

Figure 5.4 The Si npl est Appl et . j avaindow after you've entered the empty class
definition.

AN EXAMPLE: THE SIMPLEST APPLET

= 05.01 - empty project [E
4 items 1705 ME in disk 60.<4 ME available
ait

rri

|z’

51mplest.&pplet.u

(m

FFF]

=
™

Simplestapplet.java

]
I
iy
y

.

simplestApplet.htmi

Simplestapplet

i

]

EE

Figure 5.5 The files in your project’s folder after you've compiled your Java source code.

HTML file in the SimplestApplet project for you to use. (For testing purposes,
you'll often create HTML files for your new projects by cutting and pasting from
existing HTML files and changing the name of the Applet class referred to by the
HTML file.) Take a look at the HTML file now by double-clicking the file
Si npl estAppl et . ht min the project window (Figure 5.6).

There are two lines in this file. The first line begins the applet definition:

<appl et codebase="Si npl est Appl et" codebase="Si npl est Appl et "
code="Si npl est Appl et. cl ass" w dt h=250 hei ght =50>

(While this book’s page width forces us to break this HTML code into two lines,
you can see from the screen shot in Figure 5.6 that this code really only requires
one line in the HTM file.) This line of HTML code does the following two things:

1. It identifies which class defines the applet through the use of the keyword
code= The name of the compiled class file that contains the applet is supplied

S==—————————— SimplestApplet.html EEI
“applet cndebuse="5implestFIppIet"| code="SimplestApplet. class" width=230 height=50: 5
“japplet: =1

-

DIEE] Jine: 1K I [

Figure 5.6 The Si npl est Appl et . ht nfile.

63

THE DEVELOPMENT CYCLE

64

in quotes. It also identifies where to find this compiled class. It is in the folder
named SimplestApplet, which is identified by the keyword codebase=

2.1t provides an initial size for the applet. If the applet were running in a Web
browser rather than in a special window for testing that’s supplied by
Metrowerks Java, then the browser would be able to arrange the other ele-
ments in the Web page around the applet because the browser would know
how much room the applet needed. The keywords wi dt h=and hei ght =indi-
cate that the applet should be sized to the values provided.

The second line ends the applet definition:
</ appl et >

This, my friends, is a perfectly valid applet and HTML file! What’s more,
since an applet automatically displays a window and since we’ve set the size for
this window in the HTML file, we’re done.

The SimplestApplet class should compile fine. If, for some reason, a window
appears indicating that something went wrong, close this window and look over
your Si npl est Appl et . j avdile very carefully. Be sure you've typed in every-
thing exactly as shown in this book. Remember, Java, like all programming lan-
guages, is very picky about what letters and symbols you type and will become
confused if you don’t follow the rules of the language exactly. (At the end of this
chapter, we’ll look at how error messages identify where something went wrong.)

Once your applet compiles, you can run the applet. Just as you did in Chapter
2, drag the icon for the HTML file called Si npl est Appl et . ht nffrom the folder
05.01- enpty proj ect and drop it onto the Metrowerks Java application icon.
When you do, the Java interpreter (Metrowerks Java) will start and run your ap-
plet. Figure 5.7 shows what this will look like.

=[0= Applet Diewer: SimplestApplet.class

applet started

=

Figure 5.7 SimplestApplet as it appears when run on a Mac.

EDITING THE SOURCE FILE

We've created an actual working applet, even though it’s not doing much yet.
Starting in Chapter 6, you'll begin to write some Java code for real. For now, just
think about the steps that are occurring when you create, compile, and run a Java
applet. Think about launching the Java interpreter and Applet Viewer (Metro-
werks Java) by dropping the HTML file icon onto the Metrowerks Java applica-
tion icon; how Metrowerks Java loads the class referred to in the HTML file; and
how it sizes the window according to the dimensions in the HTML file. Notice
that the Applet class knows how to display a window on the screen without your
doing anything. All you have to do is tell it its default size.

Editing the Source File

Now you get to see how the development cycle works. In the next few sections,
you’ll edit the source file, add some classes, and even generate some syntax errors
so that you can see what to do when something unexpected happens at compile
time.

Let’s start by adding a couple of new classes to SimplestApplet. Return to the
source file for the SimplestApplet project. (The source file is named Si npl est -
Appl et . j ava) Open this file if it is not already open by double-clicking the file
icon or by double-clicking the file name in the Sinpl estAppl et. pproject
window.

Let’s add a class definition for a Circle class and a Square class. You already
know how to create a simple empty class definition. For these two classes, you
can write

class Circle {

}

cl ass Square {

}

Put these definitions after the definition for the Applet class called Simplest-
Applet. Figure 5.8 shows what your source file will look like after you've added
these two classes.

Now, recompile the SimplestApplet project (select Make from the Project
menu). If you run the applet again, you'll find it hasn’t changed. By compiling,
you will have created two new class files, however. Each of these class files will be
named based on the new classes you defined: Ci r cl e. cl assand Squar e. cl ass
You'll find these in the folder containing your project—the folder named 05. 01-

enpt ypr oj ect.

65

THE DEVELOPMENT CYCLE

66

=lI=——— SimplestApplet.java =—————

public class SimplestApplet extends java.applet.Applet { S
¥

class Circle

K

class Square |

i

Ell |Lir'|e: 2 ||-::}:||||||

Figure 5.8 Si npl est Appl et . j avafter you've added two new empty classes.

From this basic skeleton of three classes, you can start defining the rest of the
SimplestApplet program, eventually turning it into the SimpleDraw applet. That
would include things like adding graphical user interface elements to your applet
window to allow the user to draw, making new circle and square objects out of
the Circle class and Square class when the user clicked in the applet, and defining
the appropriate data and behavior needed by the circles and squares in this appli-
cation. You'll learn how to do all of these things very soon. By adding to the out-
line to the applet we’ve started here, you'll learn how to keep track of data, how
to define methods, how to create objects, how to interact with the user, and much
more.

Syntax Errors

Sometimes, you'll find that your program won’t compile, even though you
thought you typed in your program as it should appear. When this occurs, you're
most likely dealing with a syntax error.

What Are Syntax Errors?

You'll generate a syntax error when you try to compile if you use the wrong word
or symbol in your program. For example, if you forget to use a closing right curly
brace (}) to end a class definition and compile, you'll generate a syntax error. If
you mispell a word and compile, you'll generate a syntax error. Sometimes, when
you're just starting out, you'll stare at a program and be convinced you've typed
it in correctly, yet the compiler will still complain about syntax errors. How an-
noying! When that occurs, it’s very likely you’ve used a keyword or a symbol in-
correctly and the compiler really is right after all. You can browse through the

appendixes to find examples of how to use Java’s keywords and symbols if you
do get stuck.

Generating Syntax Errors

Let’s generate a syntax error so that you can see what happens (in case you
haven’t run into one already!). Our SimplestApplet program currently contains
six lines of code (counting the lines with the single closing right curly brace, but
not counting the blank lines). If we leave off the first left curly brace in this file, the
program will appear as in Listing 5.1.

Listing 5.1 A program that will not compile.

cl ass Sinpl est Appl et extends java. appl et. Appl et
}

class Circle {

}

cl ass Square {

}

Go ahead and attempt to compile this program now (select Make from the
Project menu). What happens? You get a syntax error! Figure 5.9 shows what a syn-
tax error looks like.

Not only did the Java compiler find that there was a problem, but it also iden-
tified what the problem was and where it occurred. You can open the file and
jump right to the line that contains the error by double-clicking the syntax error.
You'll notice a little arrow identifies the line where the compiler thought there
was a problem (Figure 5.10). To fix the error, all you have to do is enter the left
curly brace as appropriate and recompile.

ci————————————— Message Window ——————————59|

Of o Deac [a] [=]

W Error

Eimplestﬂppf

7
| EEE

Figure 5.9 Syntax error generated because of a problem with the source code.

SYNTAX ERRORS

67

THE DEVELOPMENT CYCLE

EEE SimplestApplet. java SEE
H}public closs SimplestApplet extends java.applet. Applet]] 'EF
1 E=A
class Circle {
¥
class Square
h
s
MEE] |Line: 1 1 ES) [=y

Figure 5.10 Arrow indicating where the compiler has identified a syntax error.

Warning

The messages indicating a syntax error has occurred will not always correctly
identify where the error exists, though it will usually be close by (within a
line or so). The reason this can happen is that the compiler must make a
guess as to what went wrong while it was looking over your program; since
it doesn’t always know what you were trying to do, it sometimes makes as-
sumptions. If the line identified by the compiler does not look incorrect, try
checking out the line above it before pulling your hair out.

Displaying Messages

Even though we won't start displaying things inside the applet’s window until
Chapter 11, our programs are still capable of displaying messages. You can do this
by writing to the Java Output window. (Remember, the Java Output window is al-
ways displayed by Metrowerks Java when you run your applet.)

Definition
The Java Output window plays the role of the standard output when run-
ning applets using Metrowerks Java. In the old days of writing software,
computer terminals didn’t have such things as windows, menus, and so on.
They only displayed characters. Back then, programmers didn’t have to
worry about where text they displayed would end up—as long as they
wrote to the standard output, it would end up on the device being used to
interact with the computer. That device might be a screen or even a line

68

DISPLAYING MESSAGES

printer, but there wasn’t any possibility of its being displayed in some win-
dow floating on the screen; there simply weren’t any windows!

In these modern times, things are more complicated, but new languages
still retain the concept of writing text to the standard output. Even in a so-
phisticated language like Java, this idea is still around. CodeWarrior allows
you to write to the standard output by supplying the Java Output window.

The Java Output Window

Even if you don’t write anything to the Java Output window yourself, Metro-
werks Java still writes its own messages to this window. As you saw in Chapter 2,
this includes messages indicating that a particular Applet class is loading and
running.

To make a message appear in this Java Output window (that is, the standard
output) from your own program, you use a command that looks like this:

System out. println("Your nmessage goes here.");

This cryptic-looking line of code contains a few aspects of Java that will be fully
explained later. Until then, it’s best to just accept that this works when we use it in
our own sample programs. This code will display the following line of text in the
Java Output window:

Your message goes here.

You can put almost anything between the parentheses and quotes and have it
appear in the Java Output window. As another example, to write the message “I
like Java in the springtime,” you could write a line of code like this:
Systemout.println("l like Java in the springtine");

As you might guess, this code makes the line:

I like Java in the springtine

appear in the Java Output window.

69

THE DEVELOPMENT CYCLE

70

Static Initializers

Now, where do we put these lines of code? We can put them in two places: in
methods and in static initializers. We haven’t learned how to define our own
methods quite yet; that’s to be covered in Chapter 7. So for now, let’s turn our at-
tention to static initializers.

When you drop your HTML file onto the Metrowerks Java icon, Metrowerks
Java starts up. It loads the Applet class listed after the code=keyword in your
HTML file. When your class loads, Java looks to see whether the class has defined
a static initializer. If it has, then Metrowerks Java executes this code.

The way you define a static initializer is by using the st at i ckeyword and an
opening and closing curly brace, like this:

public class Staticlnit extends java.applet. Applet {

static {
Systemout.printin("l like Java in the springtine");

As indicated, the code between the opening and closing curly braces after the
keyword st at i cis executed when this class is loaded. Hey—this means we have
written a Java program that actually does something! To see this work, drag and
drop the Stati cl ni t. ht nifile icon onto the Metrowerks Java application icon.
You can find this HTML file in the folder named 05. 02- st at i clocated in Learn
Java Projects. When it runs, you'll see that, as before, the applet window itself is
blank. However, our new message appears in the Java Output window. Figure
5.11 shows what the Java Output window looks like when this static initializer
code is added to an otherwise empty Applet class definition.

[
i

S=—————— Java Output
Executing: jowai sun.applet.Appletliewer

/B lueHorse /Learn@20Jdauwal20Proj ec tsB20KE /05 . 02820-820static/Staticlnit. himl
I like Jawa in the springtime

Comp letadi

|

m|a]

=l |5

Figure 5.11 A static initializer message in the Java Output window.

DISPLAYING MESSAGES

Definition
Each line of Java code that actually does something is referred to as a state-
ment. Each statement must always end in a semicolon (;), similar to the way
that each English sentence ends in a period. Notice the semicolon at the end
of the line

Systemout.println("l like Java in the springtine");

You would receive a syntax error from the compiler without this ending
semicolon. Look for the semicolon in the lines of code that follow in this
chapter and through the rest of this book to become familiar with it.

What if you wanted to write a second message in addition to singing about
Java in the spring? How could you also write out a message about preferring an-
other drink in the summer? You could write another line of code right after the
first, like this:

static {
Systemout.printin("l like Java in the springtime");
Systemout.printin("l like iced tea in the sumer");

Notice that each line of code ends in a semicolon. You can write as many lines of
code as you’d like. Just put them all between the starting left curly brace and the
ending right curly brace and you'll be fine.

Warning
With Metrowerks Java and the Applet Viewer, if you want to make a change
to your Java source code and rerun your applet, you should not drag and
drop the HTML file onto the Metrowerks Java icon again. As long as
Metrowerks Java is still running, you should select Reload from the Applet
menu.

More Complicated Messages

You must place all the text you’d like to appear in the Java Output window within
quotes. In addition to writing text, you can also write other types of information.
For example, you can display a number like this:

System out. println(99);

71

THE DEVELOPMENT CYCLE

72

You can even combine text and numbers by using the plus sign (+), like this:
Systemout.println("My agent nunber is " + 99 + "I");
This code would display the line
My agent nunber is 99!

In the next chapter, you’ll see how you can take advantage of this technique to
write even more sophisticated messages to the Java Output window.

Review

This chapter outlined the development cycle for programming in Java. You'll al-
ways follow these basic steps when writing your Java programs: Create and edit a
file to contain your Java source code, compile this code, and run your program.
When you want to make changes, repeat these steps, starting with editing the file
that contains your Java source code. You now know how to write code in your
. j avafiles and compile them to create . cl assfiles. You even know how to fix
syntax errors should you ever see these beasts.

This chapter stepped through the simplest possible Java applet. You are prob-
ably beginning to get a sense that applets know how to do some things by default.
For example, your Applet class knew how to put a window up on the screen all
by itself. You also learned how to make messages appear in a window on the
screen. Soon, you'll be displaying messages in the applet window itself, adding
graphical user interface elements and more. In the upcoming chapters, you'll gain
insights into these as well as other mysteries of Java programming.

What's Next?

In the next chapter, our first formal programming chapter, you'll learn how to
work with data. Chapter 6 discusses how to maintain data in your program by
using variables and how to use operators to change the values in those variables.
This will provide the basis for all of the programming chapters that follow.

Chapter 6
Variables and Operators

Congratulations on reaching Chapter 6! You're on the verge of becoming a Java
programmer. Let’s take stock of where you stand right now.

You're beginning to get comfortable with the CodeWarrior environment. In
particular, you know how to open a project and edit a project’s source code. You
know how to run a Java program, and you’ve run a number of Java programs as
you progressed through the first five chapters. You created a very simple applet in
Chapter 5, having learned the stages of the development cycle and one or two
Java keywords relating to applets. You even know what to do if you run into any
syntax errors, and you’'ve experienced how to go about fixing them.

You've learned a little about what it’s like to develop a program using Java,
including how to think through your program’s design by answering four
questions. You've also put together classes that will become the framework for
your application. You know how to write messages to the Java Output window.
You know that each line of code is a statement and that each statement ends in a
semicolon.

Doesn’t all this sound like you're on the road to becoming a programmer?
Now it’s time to go a little further.

One of the primary tasks of a program is to work with data. Programs work
with just about every type of data you can imagine, ranging from a person’s
hourly wage in a personnel file, to a bank balance in a checking account, to a flight
path for a space probe, to the colors of circles and squares. To write programs,
then, you need to know how to work with the data required by the program. So
far, we’ve hinted at how to begin planning to work with data, but we haven’t got-
ten into the details. This chapter will show you what you need to know to work
with data using Java.

This chapter uses parts of Chapter 5 from the book Learn C on the Macintosh,
written by Dave Mark and published by Addison-Wesley. The C language was a
direct predecessor to Java, so the approaches for maintaining and manipulating
data are quite similar between C and Java. We took advantage of this situation to
present text that has already been tested in production, as it were, and run
through the gamut by tens of thousands of readers of Dave’s other book. Where
necessary, we updated this text to take into account the differences with Java.

73

VARIABLES AND OPERATORS

74

An Introduction to Variables

A large part of the programming process involves working with data. In Java,
data is represented by using variables. Variables can be thought of as containers
for your program’s data. Imagine three containers on a table. Each container has a
label: “cupl,” “cup2,” and “cup3.” Now imagine that you have three pieces of pa-
per. Write a number on each piece of paper and place one piece inside each of the
three containers. Figure 6.1 shows what this might look like.

Now imagine asking a friend to reach into the three cups, pull out the number
in each one, and add the three values. You can ask your friend to place the sum of
the three values in a fourth container created just for this purpose. The fourth con-
tainer is labeled “sum” and is shown in Figure 6.2.

This is exactly how variables work. Variables are containers for your pro-
gram’s data. You create a variable and place a value in it. You then ask the com-
puter to do something with the value in your variable. You can ask the computer
to add three variables and place the result in a fourth variable. You can even ask
the computer to take the value in a variable, multiply it by 2, and place the result
back into the original variable.

Getting back to our example, now imagine that you changed the values in
cupl, cup2, and cup3. Once again, you could call on your friend to add the three
values, updating the value in the container sum. You've reused the same variables
using the same formula to achieve a different result. Here’s the Java version of the
formula:

sum = cupl + cup2 + cup3;

Every time you execute this line of source code, you place the sum of the variables
cupl, cup2 and cup3into the variable named sum At this point, it’s not important
to understand exactly how this line of Java code works. What is important to
understand is the basic idea behind variables. Each variable in your program is

cupl cup2 cup3

Figure 6.1 Placing a number in each of three cups.

WORKING WITH VARIABLES

Figure 6.2 Adding three numbers and placing the result in a container labeled “sum.”

sum

like a container with a value in it. This chapter will teach you how to create vari-
ables and how to place a value in a variable.

Working with Variables

Variables come in a variety of types. A variable’s type determines the kind of data
that can be stored in that variable. You determine a variable’s type when you cre-
ate the variable. (We'll discuss creating variables in just a second.) Some variable
types are useful for working with numbers. Other variable types are designed to
work with text. Still others are good for maintaining true/false values. In this
chapter, we’ll discuss only one type of variable. This will be the variable of type
i nt (i nt stands for “integer”). A variable of type i nt can hold a numerical value,
such as 27 or -589.

Working with variables is a two-stage process. First, you create a variable;
then, you use a variable. In Java, you create a variable by declaring it. Declaring a
variable tells the compiler, “Create a variable for me. I need a container in which
to place a piece of data.” When you declare a variable, you have to specify both
the variable’s type and its name. In our earlier example, we created four contain-
ers, or cups, each having a label. In the Java world, this would be the same as cre-
ating four variables with the names cup, cup2 cup3 and sum In Java, if we want
to use the value stored in a variable, we use the variable’s name. (You’ll see how
to do this later in the chapter.

Here’s an example of a variable declaration:

i nt nyVari abl e;
This declaration tells the compiler to create a variable of type i nt (remember, an
i nt is designed to work with numbers) with the name nyVar i abl e The type of

the variable (in this case, i nt) is extremely important. As you'll see, a variable
type determines the kind and range of values a variable can be assigned.

75

VARIABLES AND OPERATORS

76

Variable Names

Here are two rules to follow when you create your own variable names:

1. Variable names must always start with an uppercase or lowercase letter (A,
B,.., Zor a, b,..., z) or with an underscore ().

2. The remainder of the variable name must be made up of uppercase or lower-
case letters, numbers (0, 1,..., 9), or the underscore.

These two rules yield such variable names as myVari abl ¢ TH S_NUMBER
VaRi AbLe_1 and A1234_4321 Note that a Java variable may never include a
space or a character such as & or *. These two rules must be followed.

On the other hand, these rules do leave a fair amount of room for inventive-
ness. Over the years, different groups of programmers came up with additional
guidelines (also known as conventions) that made variable names more consistent
and a bit easier to read.

Macintosh programmers tend to use the following two conventions (which
we'll also use throughout this book):

1. We'll form our variable names from lowercase letters and numbers, always
starting with a lowercase letter. This yields variable names like number and
di gi t 33

2. When we create a variable with more than one word, we’ll start the variable
name with a lowercase letter and each successive word in the variable name

with an uppercase letter. This yields variable names like nyVari abl eand
howvany

Java is a case-sensitive language, which means that it distinguishes between
uppercase and lowercase letters. The compiler will cough out an error if you
sometimes refer to nyVari abl eand other times refer to myvari abl e Adopt a
naming convention and stick with it: Be consistent!

By the Way
Many times, programmers use a variable named i orj to keep track of inte-
gers. In fact, this book uses these names for some of its variables as well.
Why i and j ? Why not a and b or q and z? Actually, a and b (and any other
letter—or any other word, for that matter) are just as valid as i and j . Using
i andj isjusta convention.

The reason this convention arose has to do with the computer languages
that come before Java. In particular, at one time, FORTRAN was one of the
most popular computer languages around. FORTRAN is designed for math,
and, in earlier versions of FORTRAN, the way the variables were named de-
termined what types of values they could hold. In particular, all variables
that began with the letters i through n could hold an integer value (i and n
being the first two letters of integer). So, whenever FORTRAN programmers
needed a simple integer, they would use i . If they needed another integer
and i was already in use, they would use j, and so on. This convention has
stayed with programmers and is still used all the time today.

The Size of a Type

When you declare a variable, the compiler reserves a section of memory for the
exclusive use of that variable. When you assign a value to a variable, you are
modifying the variable’s dedicated memory to contain that value. The amount of
memory assigned to a variable is determined by the variable’s type.

For example, the following variable declaration reserves memory for the ex-
clusive use of the variable nyl nt:

i nt nmylnt;

If you later assign a value to myl nt, that value is stored in the memory allocated
for nyl nt. If you ever refer to the value of nmyl nt, you’ll be referring to the value
stored in this memory.

Operators

One way to assign a value to a variable is to use the = operator, also known as the
assignment operator. An operator is a special character (or set of characters) rep-
resenting a specific computer operation. The assignment operator tells the com-
puter to compute the value to the right of the = and to assign that value to the
variable on the left of the =.

Take a look at this line of source code:

mylnt = 237;

This statement causes the value 237 to be placed in the memory allocated for
my| nt. In this line of code, ny! nt appears on the left side of the = operator. A vari-
able makes a fine left-hand side of an assignment. A number (like 237) makes a
terrible left-hand side. Why? Because values are copied from the right side to the left

OPERATORS

1

VARIABLES AND OPERATORS

78

By the Way

side of the = operator. For example, the following line of code asks the compiler to
copy the value in ny| nt to the number 237:

237 = nylnt;

Since you can’t change the value of a number, the compiler will report an error
when it encounters this line of code (the error message will complain about an
“Invalid left-hand side of assignment”).

As we just illustrated, you can use numerical constants (such as 237) directly
in your code. In the programming world, these constants are called literals.
Just as there are different types of variables, there are also different types of
literals. You’'ll see more on this topic later in this book.

Look at this example code placed into a static initializer for an Applet class:
public class Sanpl e0601 extends java. appl et. Appl et {

static {
int mylnt, anotherlnt;

mylnt = 503;
anot herlnt = nylnt;

}

Notice that two variables are declared in this program. One way to declare mul-
tiple variables is to separate the variables by a comma (,), as is done here. There’s
no limit to the number of variables you can declare using this method. (Just be
sure to end this line with a semicolon.)

These variables could also have been declared by using two separate state-
ments:

i nt nylnt;
int anot herlnt;

Either way is fine. As you'll see, Java is an extremely flexible language. For ex-
ample, you can declare variables pretty much anywhere in your program. Con-
sider this example:

public class Sanpl e0602 extends java. appl et. Appl et {

static {
i nt nmyl nt;

myl nt = 503;

i nt anot herl nt;
anotherlnt = nylnt;

This code will work perfectly; the only issue is a matter of style. Some pro-
grammers like to place all the variable declarations at the start of the method so
that they are easy to find. Some programmers like to declare variables just before
they’re used. In this book, we’ll declare all the variables at the start of the method,
which is what the majority of programmers do, especially those who have pro-
grammed in less flexible languages that required all variables to be declared first.
You should pick a style you like and be consistent.

Let’s take a look at the static initializer for this program. This static initializer
starts by declaring an i nt:

i nt nmylnt;

Next, this program assigns the value 503 to ny| nt:

nylnt = 508;

Then, the program declares another variable:

i nt anot her | nt;

Finally, the value in ny| nt is copied into anot her | nt

anotherlnt = nylnt;

After this last statement, the variable anot her | ntalso contains the value 503.
Now that you know how to declare a variable and use the assignment opera-

tor to set it to a value, let’s look at some of the other operators in Java. Many of

these operators have to do with arithmetic operations (such as addition, subtrac-
tion, and so on). We’ll look at these operators in this chapter. Other operators are

OPERATORS

79

VARIABLES AND OPERATORS

80

useful for comparing two values and determining things like whether one is
greater or less than another. We'll look at these operators later in the book.

Arithmetic Operators
The +, —, ++, and — Operators

The + and — operators each take two values and reduce them to a single value. For
example, the following statement will first resolve the right side of the = by add-
ing the numbers 5 and 3:

nmylnt =5 + 3;

Once that’s done, the resulting value (8) is assigned to the variable on the left side
of the =. This statement assigns the value 8 to the variable nyl nt. Assigning a
value to a variable means copying the value into the memory allocated to that
variable.

Here’s another example:

nmylnt = 10;
anotherlnt = 12 - nylnt;

The first statement assigns the value 10 to my| nt. The second statement subtracts
10 from 12 to get 2 and then assigns the value 2 to anot her | nt

The ++ and — operators operate on a single value only. The ++ operator incre-
ments (raises) the value by 1, and the — operator decrements (lowers) the value
by 1. Take a look:

nmylnt = 10;
nyl nt ++;

The first statement assigns my| nt a value of 10. The second statement changes the
value of ny!I nt from 10 to 11. Here’s an example with - -:

nmylnt = 10;
-- nylnt;

This time, the second line of code leaves nyl nt with a value of 9. You may have
noticed that the first example shows the ++ following myl nt, whereas the second
example shows the - - preceding ny| nt.

ARITHMETIC OPERATORS

The position of the ++ and - - operators determines when their operation is
performed in relation to the rest of the statement. Placing the operator to the right
of a variable or an expression (this is called postfix notation) resolves all values
before performing the increment (or decrement) operation. Placing the operator to
the left of the variable (this is called prefix notation) performs the increment (or
decrement) first, and then the evaluation continues. The following examples
should make this point clear.

First, consider this code:

mylnt = 10;

anotherlnt = nylnt--;

The first statement assigns ny| nt a value of 10. In the second statement, the - - op-
erator is to the right of ny1 nt. This use of postfix notation assigns ny| nt’s value to
anot her | ntbefore decrementing ny| nt. This example leaves ny| nt with a value
of 9 and anot her | ntwith a value of 10.

Now, here’s the same example, written using prefix notation:

mylnt = 10;
anotherlnt = -- nylnt;

This time, the - - is to the left of nyl nt. In this case, the value of nyl nt is decre-

mented before being assigned to anot herlnt The result? Both nylnt and
anot her | ntare left with a value of 9.

The += and —= Operators

In Java, you can place the same variable on both the left and right sides of an as-
signment statement. For example, the following statement increases the value of
nmyl nt by 10:
nylnt = nylnt + 10;

The same result can be achieved using the += operator:
mylnt += 10;

In other words, the preceding statement is the same as

mylnt = nylnt + 10;

81

VARIABLES AND OPERATORS

82

Detail

In the same way, the - = operator can be used to decrement the value of a vari-
able. The following statement decrements the value of ny! nt by 10:

nylnt -= 10;

The *, /, *=, and /= Operators

The * and / operators each take two values and reduce them to a single value,
much the same as the + and - operators do. The following statement multiplies 3
by 5, leaving ny| nt with a value of 15:

nylnt = 3 * 5;

The following statement divides 5 by 2 and, if nyl nt is declared as an i nt (or
any other type designed to hold whole numbers), assigns the integral (truncated)
result to nyl nt:

mylnt =5/ 2;

The number 5 divided by 2 is 2.5. Since nyI nt can hold only whole numbers, the
value 2.5 is truncated, and the value 2 is assigned to ny| nt.

Math alert! Numbers like —37, 0, and 22 are known as whole numbers, or in-
tegers. Numbers like 3.14159, 2.5, and .0001 are known as fractional num-
bers or floating-point numbers.

The * = and / = operators work much the same as their += and - = counterparts.
The following two statements are identical:

nmylnt *= 10;
mylnt = nylnt * 10;

The following two statements are also identical:

mylnt /= 10;
mylnt = nylnt / 10;

OPERATOR ORDER

The / operator doesn’t perform its truncation automatically. The accuracy of
the result is limited by the data type of the operands. As an example, if the
division is performed using i nts, the result will be an i nt and is truncated
to an integer value. Several data types (such as f | oat, introduced shortly)
support floating-point division, using the / operator.

Operator Order

Sometimes, the expressions you create can be evaluated in many ways. For
example,

mylnt =5+ 3 * 2;

You can add 5 and 3 and then multiply the result by 2 (giving 16). Alternatively,
you can multiply 3 by 2 and add 5 to the result (giving 11). Which is correct?

Java has a set of built-in rules for resolving the order of operators. As it turns
out, the * operator has a higher precedence than the + operator, so the multiplica-
tion will be performed first, yielding a result of 11.

Although it helps to understand the relative precedence of the Java operators,
it is difficult to keep track of them all. That's where parentheses come in. Use pa-
rentheses in pairs to define the order in which you want your operators per-
formed. The following statement will leave ny| nt with a value of 16:

nylnt = (5+ 3) * 2
The following statement will leave ny| nt with a value of 11:
nylnt =5+ (3* 2);

You can use more than one set of parentheses in a statement, as long as they
occur in pairs—one left parenthesis associated with each right parenthesis. The
following statement will leave ny| nt with a value of 16:
nylnt = ((5+3) * 2);

You can check out Dave Mark’s book Learn C on the Macintosh for an explana-
tion of the equivalent bitwise operators in C and for a thorough discussion of bits,

bytes, and binary arithmetic. We’ll show how you can use this logical OR operator
to combine values in Chapter 11 when we define a font’s style.

By the Way

83

VARIABLES AND OPERATORS

84

Bitwise Operators

There are a few special operators that work with the individual bits in a variable
or number. These are most often used only as advanced programming techniques,
but we’ll mention them here because you will run across them in your travels, es-
pecially when combining variables that define properties and styles. For example,
we'll use these operators when specifying a font style in Chapter 11. For now,
here’s what you need to know.

The bitwise operators, (which are operators that work on bits rather than tak-
ing into account the number as a whole, are listed in Table 6.1.

Table 6.1 Bitwise operators.

Operator Description

>>> Shifts the bits in a variable to the right and fills the vacated bits
with Os.
| Performs a logical OR, which results in 1 if either of the bits are
on and 0 if both bits are off.

A Performs a logical AND, which results in 1 only if both bits are on
and 0 otherwise.
<< Shifts the bits in a variable to the left.
>> Shifts the bits in a variable to the right.

Sample Programs

Starting with this chapter, we will include a section that steps through sample
code, line by line, that illustrates the programming concepts you learned about in
the chapter.

So far in this chapter, we’ve discussed variables (mostly of type i nt) and op-
erators (mostly arithmetic). The program examples on the following pages com-
bine variables and operators into useful Java statements.

Opening Operator.u

Our next program, maintained by the project file Oper at or . pprovides a testing
ground for some of the operators covered in the previous sections. Oper at or . j ava
declares a variable (nmy| nt) and uses a series of statements to change the value of

SAMPLE PROGRAMS

=|lI=—-— Operator.p Ewgi
[¥] File Code Data W
= w Jawa Source 0 T
W Operator.java o 0} o[
w classes zip i 0i 3]
=¥ HTML files 0: 0: =
..................... Operatorhtml ooooooio.ndalonfai B
i
3 file(s) 0 0 i

Figure 6.3 The Oper at or . pproject window.

the variable. By including a System out. printl n()after each of these state-
ments, Oper at or . j avamakes it easy to follow the variable, step by step, as its
value changes.

Start up CodeWarrior by double-clicking on the project file Oper at or . pinside
the Learn Java Projects folder, in the subfolder named 06. 01 - oper at or. The
project window for Oper at or . pshould appear as in Figure 6.3.

Compile this applet by selecting Make from the Project menu. Once the code
compiles, drag and drop the HTML file icon from the folder 06. 01- oper at or
onto the Metrowerks Java application icon. Metrowerks Java will launch the Ap-
plet Viewer and run the program, displaying the output from the program in the
Java Output window. Compare your output to that shown in Figure 6.4. They
should be the same (except, of course, for differences in the hard disk name and
folder name where you installed CodeWarrior and the Learn Java Projects folder).

SI=———————————— Java Output EEI

Executing: jowai sun.applet.Appletl)iswer B

/B lueHorse Learn820Javaf20Proj ec t=820KR /06 . 0 1820-8200perator /Operator hitml [

mylht ——>* &

mylhnt ——» 7

mylnt ———>» 2

mylnt ———r 20

mylhnt ———>* 5

mylnt ——» 2

Comp | eted{d:} L
i

] B

Figure 6.4 The output generated by the Operator applet.

85

VARIABLES AND OPERATORS

86

Stepping Through the Source Code

Before we step through the source code in Oper at or. j avayou might want to
bring the source code up on your screen (double-click the name Oper at or . j avdn
the project window or select Open from the File menu and then double-clicking the
file name oper at or . j avi A new window will appear, listing the source code in
the file Oper at or . j ava

The file Oper at or . j avastarts off by defining a new class, just as you learned
about in the previous chapter. This program defines an Applet class called
Operator.

We've placed a whole bunch of Java statements inside a static initializer.
These statements set a value for a variable, change the value, and then display the
new results.

The static initializer starts out by declaring an i nt variable named ny| nt:

i nt nylnt;

At this point in the program, ny| nt is equal to 0. We haven't set it to any par-
ticular value, but Java always makes sure your variables contain some known
value.

The next line of code uses the * operator to calculate a value of 6 and the =
operator to assign this new value to nylnt. Following that, we use Sys-
tem out . printl n(}o display the value of myl nt in the Java Output window:

mylnt = 3 * 2;
Systemout.printin("nylnt --->" + nylnt);

The next line of Oper at or . j avancrements ny| nt from 6 to 7 and prints the
new value in the Java Output window:

nylnt += 1;
Systemout.printin("nylnt --->" + nylnt);

The next line decrements ny| nt by 5 and prints its new value, 2, in the Java
Output window:

nylnt -=5;
Systemout.printin("nylnt --->" + nylnt);

Next, nyl nt is multiplied by 10, and its new value, 20, is printed in the Java
Output window:

SAMPLE PROGRAMS

mylnt *= 10;
Systemout.println("nylnt --->" + nylnt);

Next, nyl nt is divided by 4, resulting in a new value, 5:

nylnt /= 4;
Systemout.println("nylnt --->" + nylnt);

Finally, ny! nt is divided by 2. Since 5 divided by 2 is 2.5 (not a whole num-
ber), a truncation is performed, and ny| nt is left with a value of 2:

nylnt /= 2;
Systemout.println("nylnt --->" + nylnt);

Opening Postfix.u

Our next program demonstrates the difference between postfix and prefix nota-
tion (the ++and - - operators defined earlier in the chapter). In the Finder, go into
the Learn Java Projects folder, then into the 06. 02 - post f i subfolder, and dou-
ble-click the project file Post f i x. pCodeWarrior will close the project file Oper a-
tor. pand open Post fi x. u

Take a look at the source code in the file Post f i x. j avaand try to predict the
result of the two Syst em out . pri nt | n(}tatements before you run the program.
Careful, this example is tricky! (This file is displayed in Figure 6.5.) Remember,
you can open a source code listing for Post f i x. j avéy double-clicking the name
Post fi x. j avan the project window.

Once your guesses are locked in, select Make from the Project menu to compile
the applet and then drop the HTML file in the 06. 02 - post fi Xolder onto the
Metrowerks Java application. How’d you do? Compare your two guesses with
the output in Figure 6.6. Let’s look at the source code.

Stepping Through the Source Code

The first half of Post fi x. j avais what you’ve seen before. The variable ny| nt is
declared to be of type i nt inside a static initializer. Then, nyl nt is assigned a
value of 5:

int nylnt;
mylnt = 5;

The tricky part comes next. The first call to Syst em out . pri nt | n(has an ex-
pression embedded in it. This is another feature of the Java language. Where

87

VARIABLES AND OPERATORS

88

-O—— Postfin.java EE|
public class Postfix jova.applet. Applet { _.‘i:i:
static {]
int mylnt;
mylnt = 5;
System.out . printlint"mylnt ——>* " + mylnt++o;

System.out. printlnd"mylnt ———: + +tmylntl;

i

h
MEE| |Line: 2 165 N

Figure 6.5 The file Postfi x. j ava

there’s room for a variable, there’s often room for an entire expression. This al-
lows you to perform two actions in the same line of code so that

Systemout.printin("nylnt --->" + nylnt++);

performs two different tasks. First, the message nyl nt ---> 5is printed to the
Java Output window. (That is, at the time the message is printed, nyl nt has a
value of 5.) Second, ny| nt is incremented by 1. By the time this line of code is fin-
ished executing, ny| nt has a value of 6. Two things for the price of one!

Executing: jawai sun.applet.Appletliswer

JBlueHor=se /LearnB20JawafZ0ProjectsB20KR 06 . 02820-820postfix /Postfix himl
mylnt ———* 5

mylnt ———: 7

Comp letedcOl

o
i<

Q|

Figure 6.6 The output generated by the program Postfix.

SAMPLE PROGRAMS

The use of postfix notation in the preceding line of code ensures the increment
by 1 occurs after the value for nyl nt is printed. Check out the next line of code:

Systemout.printin("nylnt --->" + ++nylnt);

This line of code uses prefix notation. This ensures that ny| nt is incremented first,
which makes myl nt take on the value of 7. Then, the message is printed to the
Java Output window.

Can you break each of these System out . pri nt| n(statements into two
separate ones? Give it a try and then read on. . .
The first Syst em out . pri nt | n(Jooks like this:

Systemout.println("nylnt --->" + nylnt++);
Here’s the two-statement version:

Systemout.printin("nmylnt -->" + nylnt);
myl nt ++;

Notice that the statement incrementing nylnt was placed after the
System out . printl n(.)Do you see why? The postfix notation makes this
necessary. Run through both versions and verify this for yourself.

The second Syst em out . pri nt | n(Jooks like this:

Systemout.println("nylnt --->" + ++nylnt);
Here’s the two-statement version:

++myl nt ;
Systemout.println("nylnt --->" + nylnt);

This time, the statement incrementing nyl nt came before Syst em out.
println() It's the prefix notation that makes this necessary. Again, go
through both versions and verify this for yourself.

The purpose of demonstrating the complexity of the postfix and prefix operations
is twofold. On the one hand, it's extremely important that you understand exactly
how these operators work from all angles. This will allow you to write code that
works and will aid you in making sense of other programmers’ code. On the other

89

VARIABLES AND OPERATORS

90

hand, embedding prefix and postfix operators within statements that also per-
form other tasks may save you a line of code but, as you can see, may force you to
take more time to unravel the logic.

Programming with Style

You've now learned enough about Java that it's time to say a few words about
style. As your programs become more complicated, one danger you must always
guard against is writing code that is difficult to understand and maintain. With
that mind, let’s look at some approaches for making sure your code is clear, is easy
to read, and is written in a style that most programmers use in their own code.

Writing Comments

One great technique for explaining your program to other programmers is to use
comments. Comments are written directly in English and are mixed right into
your source code. When you add a comment, you first tell the Java compiler
you're beginning a comment. This way, the compiler knows that it should skip
over your comment before it begins to compile again.

There are two basic types of comments you can add to your code. The first
type is created by using two forward slashes, like this:

/1 This is a conment.
Here’s an example of this type of comment:

public class PieEaters extends java. appl et. Appl et {

static {
int nunPieces; // Number of pieces of pie left

nunPieces = 8, // W started with 8 pieces

nunPi eces--; /1 Marge had a piece
nunPi eces- - ; /1 Lisa had a piece
nunPi eces -= 2; // Bart had two pieces!!

nunPi eces -= 4; // Honmer had the rest!!!

Systemout.printin("Slices left =" + nunPieces); // no nore

PROGRAMMING WITH STYLE

Everything starting from the // that’s on the same line is ignored by the com-
piler. Comments that use the double forward slashes should appear after all the
other code on a line. They can also appear on lines all by themselves.

The other type of comment is better suited to larger and more involved com-
ments. You can indicate the start of a comment by using / * (forward-slash star)
and the end of a comment by using */ (star forward-slash). Everything between
the / * and */ is ignored by the compiler. For example, here is this type of com-
ment in action:

public class PieEaters extends java. appl et. Applet {

static {
int nunPi eces; [// Nunber of pieces of pie left

nunPi eces = 8; // W started with 8 pieces
nunPi eces- - ; /] Marge had a piece

/* This programcharts the progress of a bunch of pie eaters.
Even if we put valid Java code within the comment, this code

is ignored.
nunPi eces- - ; /] Lisa had a piece
nunPi eces -= 2; // Bart had two pieces!!

nunPi eces -= 4; // Honer had the rest!!!
This is the end of the comment. */

Systemout.println("Slices left =" + nunPieces); // 7 left

Formatting

As your programs grow more and more complicated, it becomes increasingly im-
portant to use good programming style and format to help keep your code read-
able. Nothing is more frustrating than trying to figure out someone else’s code
that is difficult to read and is not well documented. Well, maybe there is one thing
more frustrating—having this experience with your own code! You'll find that
when you return to look over your own code the next day, the next week, or

91

VARIABLES AND OPERATORS

92

longer, you'll be glad you took a few moments to make your code easy to read
and understand. Here are a few simple techniques you can use to help you find a
programming style you're comfortable with.

Inserting White Space

You'll notice that the sample code in this book intersperses lots of white space in
the form of blank lines and indentations. The Java compiler does not care how
much white space you insert into your code. The compiler will simply ignore this
white space. Check out the following program and compare it to the PieEaters
program shown earlier:

public class PieEaters extends java.applet.Applet { static { int

nunPi eces; nunPi eces = 8; nunPi eces--; nunPi eces--;
nunPi eces -= 2; nunPi eces -=

4; Systemout.printin("Slices left =" + nunPieces); }
}

Even this simple example shows that your program can start to look pretty hairy
when it’s not nicely formatted. As you can see, the original looks much better!

Lining Up the Curly Braces

Notice, in the original PieEaters applet, how the closing right curly brace always
aligns with the line that begins with the corresponding left curly brace. This
makes it easy to see where related chunks of code begin and end. All the state-
ments within a block of code delineated by curly braces are first indented by three
or four spaces or by a tab stop (it doesn’t matter, just be consistent) and then
aligned within that block. And, as was already pointed out, each closing right
curly brace is placed on its own line.

You'll find lots of other examples of indentation and white space usage in the
appendixes at the back of this book and in the sample programs on the CD-ROM.
Of course, these styling and formatting techniques are not requirements of the lan-
guage. You might want to find your own programming style, but keep in mind the
style shown here is what most Java programmers use when they develop software.

Review

This chapter introduced the concepts of variables and operators. You've learned
how to declare a variable and assign a value to it. You've also learned how to per-
form arithmetic operations, such as addition, subtraction, multiplication, and di-
vision, and you’ve learned about the operators +=, - =, *= and / =.

The only types of variables you’'ve worked with so far have been i nts. which
hold whole numbers, or integers. Soon, you'll be introduced to other data types
that are more appropriate to use for floating-point or fractional values. You'll also
learn about operators that answer questions such as, Is one variable greater than
another? Are two variables equal?

You've also considered programming style. You can use comments, white
space (blank lines and indentations), and curly brace alignment to help make cer-
tain you can decipher your own code when you return to it at a later date.

What's Next?

Now that you’ve seen how to use variables, it’s time to discuss how you can im-
plement behavior. This means creating methods. In Chapter 7, you'll be intro-
duced to the basics of creating methods. In Chapter 8, you'll learn how to write
methods that do some very sophisticated things, such as make decisions and
“loop” through a sequence of statements. In Chapter 9, you'll see how to associate
the same methods and variables you're learning about now with your own cus-
tom objects.

WHAT'S NEXT?

93

Chapter /
Introduction to Methods

Now we turn our attention to making our applets do something! In order to reach
that point, we have to journey across one more bridge to the land of methods. The
first part of this chapter will describe how to create and work with methods. In
the second part, we’ll use this knowledge to start programming our applets.

Creating a Method

Methods are one of the building blocks of objects and classes. All of the behavior
associated with your Applet class and the classes used by your Applet class is de-
fined by methods.

A method is a chunk of source code that accomplishes a specific task. Methods
identify themselves by names. For example, you might have a method that con-
tains the set of instructions describing what should appear in an applet’'s window.
You might call this method pai nt (). Or you might write a method for the circle
objects we discussed earlier that would calculate the circle’s area. This method
might be called cal cul at eAr ea() A NASA space shuttle program, a tic-tac-toe
program, and a business program might have methods called fi reThrusters()
det er mi neNext Move() and cal cul at ePayr ol | () respectively. Each of these
methods would contain the instructions necessary to perform its specific task.

Throughout this book, we’ll refer to methods by placing a pair of parenthe-
ses after their names. This will help to distinguish between method names
and variable names. For example, r adi us() would refer to a method, while
r adi uswould refer to a variable.

Each method defines a chunk of code that performs a specific task. Methods
work together so that a method handling a certain task can ask another method to
perform a sub-task. After the other method executes, it returns control back to the
first method.

Detail

95

INTRODUCTION TO METHODS

96

Let’s look at a simple example before studying the details. Here’s a set of in-
structions that displays the colors of the rainbow in the Java Output window, one
line at a time:

Systemout.printlin("red");
System out . printl n("orange");
Systemout.println("yellow");
Systemout.println("green");
Systemout. println("blue");
Systemout. println("indigo");
Systemout.printlin("violet");

This code will work fine, especially if we’ll only run through this code in one
spot in our program. If our program needs to write out the colors of the rainbow
in two different places, we would end up duplicating this code. That would be
wasteful in terms of space and programming effort. It would be much better to
group these seven statements together into one bundle and execute this chunk of
code whenever we need to.

We can do that exact thing by turning these seven lines of code into their own
method. Here’s an example of a method that writes out the seven colors of the
rainbow:

void witeColors() {
Systemout.println("red");
System out . println("orange");
Systemout.println("yellow');
Systemout.println("green");
Systemout. println("blue");
Systemout. println("indigo");
Systemout.println("violet");

We'll refer to this method as writ eCol or s() The method definition starts
with the keyword voi d which we’ll cover in just a moment. You can see the
method name, wri t eCol or sis followed by a left and a right parenthesis, which
we’ll go over also. Then, a left curly brace indicates the start of the method. All of
the statements that make up the method follow this left curly brace. After all the
method’s statements, the method indicates where it ends by using a right curly
brace.

INVOKING A METHOD

Now, whenever you want to write all the colors of the rainbow to the Java
Output window, you can invoke this method from someplace in your code. In-
voking a method means executing its instructions. You can invoke a method in

Java by writing

writeCol ors();

This single line makes all seven statements in the wr i t eCol or s()method execute,

which makes the Java Output window fill up with rainbow color names.

Invoking a Method

As Figure 7.1 shows, invoking wri t eCol or s(is straightforward. Your method
turns control over to the method named wri t eCol or s() When wri t eCol or s()is
done executing its statements, it returns control back to the spot in your method

where you invoked wr i t eCol or s()
For example, look at these three lines of code:

Systemout.println("Here are the colors of the rainbow ");
writeCol ors();
Systemout. println("Wen was the last tinme you saw a rai nbow?");

These three statements would write the following to the Java Output window:

Here are the colors of the rai nbow

red

or ange

yel | ow

green

bl ue

i ndi go

vi ol et

When was the last tinme you saw a rai nbow?

turn control over towr i t eCol or s()

— il

your method < writeCol ors()

your code r%tﬂgrr‘]%t)ﬂgg I'to write the seven colors of the rainbow
y to the Java Output window

Figure 7.1 InvokingwriteCol ors().

97

INTRODUCTION TO METHODS

98

Using Variables

Just as you used variables in a static initializer in the previous chapter, you can
also use variables in your methods. Here’s an example of a method that finds the
area of a triangle:

void triangl eArea() {
int area;
int base;
i nt height;

base = 10;
hei ght = 20;

area = (base * height) / 2;

This method, named t ri angl eAr ea() uses the variables baseand hei ght to hold
the triangle’s data and ar eato hold the result of the calculation.

Variable Scope

In Java, every variable is said to have a scope, or range. A variable’s scope defines
where in the program you have access to a variable. In other words, if a variable is
declared inside one method, can another method refer to the same variable? The
answer is no!

Java defines variable scope as follows. A variable declared inside a method is
local to that method and may be referenced only inside that method. (If you ever
hear programmers referring to a local variable, this is what they mean most often:
a variable declared inside a method and only accessible inside that method.)

That is, outside the method that defines the variable, the variable doesn’t ap-
pear to exist! This means you cannot declare a variable inside one method and
then refer to that same variable inside another method. Here’s an example that
will never compile:

public class Triangle extends java.applet. Applet {

voi d di spl ayArea() {
int area;
i nt base;
i nt height;

INVOKING A METHOD

base = 5;
hei ght = 6;
findArea();

Systemout.printIln("The area is " + area);

void findArea() {
area = (base * height) / 2; // Does not conpile!

}

This code would compile fine if the variables declared inside the method
di spl ayAr ea()were accessible to the method fi ndArea() However, they are
not. Since findArea() knows nothing about variables declared in another
method, the compiler will complain about undeclared variables if you do attempt
to compile this.

If you do declare variables named ar eg, base, and hei ght inside f i ndAr ea()
these would be considered different variables altogether. A variable named base
in di spl ayAr ea() for example, would know nothing about a variable named
basein fi ndAr ea() That is, changing basein f i ndAr ea()would not affect base
in di spl ayAr ea() and each method could use its own local variable named base
independently of the other.

Communicating Between Methods

So, then, how can methods communicate with each other? How can one method
tell another method to use a particular value in a calculation? How can a method
return the result of a calculation to the method that invoked it? Java, of course,
provides a way to do this. Instead of sharing local variables, you pass data be-
tween methods.

Some methods require you to supply them with data when you invoke them.
Whether you have to supply data or not depends on how the method is defined.
Methods require data when they need help performing a particular task. Values
you might provide include numbers to be used in calculations or messages that
should appear on the screen. In the preceding example, f i ndAr ea()could be de-
fined as taking the values for the area and height. That would enable di spl ay-
Ar ea() to pass f i ndAr ea()the values to use in the calculation.

Some methods return a result to the code that invoked it. Again, whether a
method returns a result or not depends on how it is defined. Results returned by a
method might include the value of a calculation or whether the method was

99

INTRODUCTION TO METHODS

successful or not in carrying out its task. In our triangle example, f i ndAr ea()could
return the area it calculated back to di spl ayAr ea()That would enable di spl ay-
Area() to use fi ndAr ea()to perform the calculation and display the result pro-
vided by f i ndAr ea()

In the case of wr i t eCol or s() this method does not return a value, nor does it
need any values from the code invoking it to write out the seven rainbow colors.
This is a simple method, but we left unanswered the meaning of the keyword
voi d as well as the empty parentheses after the method name. Now that we’ve
gotten our feet wet, let’s start looking at the details of invoking and writing
methods.

Whether you supply any data to the method you invoke or whether the
method returns a result depends on how the method you invoke has been de-
fined. If you do supply some data to the method and if the method does return a
result, invoking a method could be diagrammed as in Figure 7.2.

For another example, you might have a method that finds the average of two
numbers called fi ndAver age() This type of method would be quite different
fromwr i t eCol or s() First, it would be useful to be able to supply f i ndAver age()
with the two numbers for which you want to find the average. Second, it would
be great if fi ndAver age()returned the result of this calculation back to the
method that invoked it.

To perform the calculation that finds the average of two numbers, you would
use variables and operators very similar to those in the triangle example, like this:

int average;
average = (nunl + nunR) / 2;

This code does not yet show the variables nunil and nun® being defined and as-
signed values, but we’ll get to that in a moment. For now, just know they are i nt
values that have been initialized to the values for which we want to find the

average.
supply some data
— W
your method another method
your code return aresult use the data supplied by your code

calculate aresult

Figure 7.2 Invoking a method that uses some data you supply to calculate and return a
result.

100

INVOKING A METHOD

To turn this code into its own method, you can wrap this code in a method
definition. Here’s an outline of what the method definition might look like (we’ll
turn this into Java code in a moment):

define a method that returns an int and accepts two ints {
cal cul ate the average of the two ints
return the average

At any time, you can find the average of two numbers by invoking this
method. This would occur as depicted in Figure 7.3.

Take a look at how you would invoke this method in Java. In this example,
we're finding the average for two numbers, 10 and 20:

int average = findAverage(10, 20);

As you can see, we're supplying two numbers to f i ndAver age() We supply
the values to fi ndAver age()inside the parentheses, separating the values by
using a comma (,). Remember, when we invoked wr i t eCol or s()previously, like
this,

writeCol ors();

we just used an empty set of parentheses because wri t eCol or s()did not take
any values. Thatis, writeCol or s()was self-sufficient; it had all the information
it needed to write out the colors of the rainbow. However, f i ndAver age()needs
to know which values it should use in its calculation.

Somehow, fi ndAver age()is calculating the average of these two numbers
(but notice our own code does not need to concern itself with how this is accom-
plished). Once the average is determined, f i ndAver age()returns this value. We
assign the value it returns—in this case, 15—to our own variable, which we’ve

supply two numbers

&
your method fi ndAver age()
invokef i ndAver age() use the numbers supplied by your
and assign the average -—— | codeto calculate the average of
to avariable return the average | these two numbers

Figure 7.3 Invoking a method to find the average of two numbers.

101

INTRODUCTION TO METHODS

102

named aver age We do this assignment using the assignment operator, =, just as if
we were assigning a number instead of invoking a method. That is,

int average = 15;
and
int average = findAverage(10, 20);

are both perfectly valid statements in Java, as long as f i ndAver age()returns an
i nt value.

Defining Parameters and Return Values

Now let’s write the method that finds the average. We already know what the
body of the method will be—that is, what the chunk of code will look like that
performs the calculation. We’ve already written this code, here it is again:

int average;

average = (nunl + nunR) / 2;

The Keyword return

The way that we return a value from a method is to use the keyword r et ur nfol-
lowed by the value we would like to return. So, to return the value contained in
the variable named aver age we would write

return average;

To return a number directly, we can just write out the number. For example, this
code shows the value 0 being returned:

return O;

If fi ndAver age()did not receive any data when it was invoked, it would be
defined like this:

int findAverage() {
i nt average;

average = (nunl + nunR) / 2; // Does not conpil el
return average;

DEFINING PARAMETERS AND RETURN VALUES

As with writeCol ors() all of the method’s statements are contained be-
tween a left curly brace and a right curly brace. The method definition indicates
that it returns an i nt value, as you can tell by the keyword i nt preceding the
method name. With writeCol ors() we used the keyword voi d to indicate
wr i t eCol or s()did not return a value at all.

Parameters

This would be a complete method definition, except for one thing: We have not
yet declared or initialized the variables nuniLand nun If f i ndAver age()did not
provide a way to set nunland nun—for example, if it always used the same val-
ues, such as 10 and 30—then we could write our fi ndAver age()method as fol-
lows:

int findAverage() {

int numL = 10;
int nun2 = 30;
int average;

average = (nunl + nunR) / 2;
return average;

}

This code would compile and run just fine. However, this would not make f i nd-
Aver age() particularly flexible or useful.

Rather, we would prefer to invoke f i ndAver age()as we did in the previous
section, supplying the values for nunl and nun® ourselves, not leaving them
“hard-coded” to 10 and 30 in the fi ndAver age()method itself. To accomplish
this, we place the variable definitions between the parentheses after the method
name, like this:

int findAverage(int numl, int nunR) {
int average;

average = (nunl + nunR) / 2;
return average;

103

INTRODUCTION TO METHODS

104

Detail

Now, this method definition indicates that it accepts two i nt values when it is in-
voked and that it also returns a value of type i nt. You can see how this definition
matches up to an invocation of this method, such as

int result = findAverage(10, 20);

The value 10 is assigned to the variable nun, and the value 20 is assigned to
the variable nun Inside f i ndAver age() the calculation for the average of these
two numbers takes place, and the result is assigned to the variable named aver -
age. Then, the value of aver age—in this case, 15—is returned by f i ndAver age()
The calling code assigns this returned value to the variable it named r esul t.

Notice that we have defined the variable r esul t and used it in a statement
all on one line. This is perfectly valid in Java. Also, we have not yet learned
what to do with values that are fractional other than truncating them. For
example, if we found the average of 1 and 2, the calculation would yield 1.5.
We'll learn how to deal with these types of values in Chapter 12.

You must always be certain to match up the way you invoke a method with
the method’s definition. If the method takes three values (or parameters in pro-
grammer parlance), you should supply these three parameters whenever you in-
voke the method. Anything else would cause the compiler to complain and not
compile your program. For example, given a method like this,

int findAverage(int numl, int nun2, int nunB) {
int average = (numl + nun? + nunB) / 3;

return aver age;

}

you would need to supply three values when you invoked it, like this:
int result = findAverage(10, 20, 30);

That is, if f i ndAver age()took three parameters, invoking it by

int result = findAverage(10, 20);

wouldn’t cut it.

DESIGNING WITH METHODS

Ways to Use return

There are several ways to use r et ur n If your method does not require you to re-
turn a value, you can exit a method immediately by using this statement:

return;

This statement returns control back to the code that invoked this method right
away, without executing the rest of the method’s code after the r et ur nstatement.
You should only use this type of r et ur nstatement, without a value, if your
method is declared as not returning a value—that is, if it is declared as voi d.
You'll receive an error from the compiler if you try to use this plain r et ur nstate-
ment in a method that indicates it returns a value, as in a method declared as

i nt addTheseNunber (i nt nunl, int nunR) {
int sum= nunml + nung;
return;

This definition for addTheseNunber s()indicates it will return a value of type
i nt—but then the method forgets to return a value with the r et ur nstatement!
The compiler will complain about this.

Here are two versions of valid r et ur n statements for addTheseNunber s(.)
The first is

return (numt + nung);

This statement first adds numi to nunR and returns the result, without the need for
declaring a variable named sum You can also write the same thing like this:

return nunl + nun®;

Notice that the second version does not include any parentheses. Either of these
forms is fine.

Designing with Methods

What's the advantage of creating methods? With methods, you can create chunks
of code that perform specific tasks. This is a great help to software development
because it enables you to think about parts of your programs in high-level sec-
tions rather than always thinking in terms of the details.

105

INTRODUCTION TO METHODS

106

askUser For Nunber 1()

Y

askUser For Nunber 2()

Y

fi ndAver age()

Y

di spl ayAver age()

Figure 7.4 One method invoking each of these four other methods in turn, one after the
other.

You might be beginning to see how you can use methods in your own pro-
grams. If you wanted to ask the user for two numbers, find the average for these
two numbers, and then display the result, you could segment your own program
into four methods, each performing a particular task. This is diagrammed in Fig-
ure 7.4. Here is the code:

askUser For Nunber 1() ;
askUser For Nunber 2() ;
findAverage();

di spl ayAver age() ;

You could also segment this further. For example, the two methods
askUser For Nunber 1()and askUser For Nunber 2()are probably very similar.
Rather than duplicating code between them, you can collect the similar code into
a single method, perhaps called get I nput () Now, askUser For Number 1(Jand
askUser For Nunber 2(kan each invoke get I nput () to handle the common de-
tails. Figure 7.5 expands on Figure 7.4 to take this into account.

Taking Part in Your Applet’s Life Cycle

So, you've slogged through the first part of this chapter and learned the basics of
methods. You've learned how to write methods and how to invoke them, how to
pass parameters to them and how to return values. Now it’s time for the payoff.
In this section, you'll learn how to tap into the dialog that takes place between
your applet and the Web browser. (We'll talk about the browser in this chapter,
but we mean the environment in which your applet is running, which will be an
Applet Viewer if you are developing in CodeWarrior.)

TAKING PART IN YOUR APPLET'S LIFE CYCLE

askUser For Nunmber 1()

Y

askUser For Nunber 2()

Y

fi ndAver age()

Y

di spl ayAver age()

get | nput ()

\\

4
/]
W

M

Figure 7.5 Creating a method called get | nput ()shared by two other methods.

What does the browser say to the applet? What can you (and should you) do
when the browser talks to your applet? The short answer is that the browser con-
trols what happens in the life of your applet, and you should do the things appro-
priate to a particular event in your applet’s life. The way that a browser informs
an applet of a particular stage of its life is by invoking a method. Aha! This is why
we needed to understand methods before we got to this point!

Applets have a life. It's true. It’s just that their lives are lived out in the com-
puter. Applets are born; applets live; they awaken; they sleep; and they pass on.
Before we step through the applet’s life cycle, however, there is one detail about
applets that we haven’t covered yet and that it’s time for you to know about.

Applet Classes and Instances

When we created our applets so far, we made them like this:

public class M/Appl et extends java. appl et. Appl et {
}

Working with this class definition makes it appear that when we run an ap-
plet, we are working with the Applet class. This is true, but only up to a point.
What's happening is this. First, the class is loaded into the browser. Then, any
static initializer code is executed, as we’ve seen. Next, and most importantly, the
browser creates an object based on your Applet class. That is, the browser instantiates
(creates an instance of) your Applet class. At this point, your applet is born. Once
this is accomplished, the browser begins trying to invoke instance methods for
your applet object. This is illustrated in Figure 7.6.

107

INTRODUCTION TO METHODS

HTML
browser encountersthe appl et

(browser) tagin an HTML document »| <appl et >

browser loads the class file for the applet

r— —'— 7

| Appletclass |

L - — — —

Y

browser executes any static initializers

browser creates an instance of the applet

browser begins a dialog with the new _
applet instance to move the applet g applet object
through itslife cycle

Figure 7.6 Diagram showing how the browser (or Applet Viewer) creates an instance of
your Applet class and begins to interact with this object.

There is a different instance method corresponding to each stage of an ap-
plet’s life. If you don’t supply a method for a particular applet phase in life, that's
fine. The browser doesn’t care; it goes on its merry way. However, supplying a
method is your big chance to insert your own behavior into your applet and make
your applet unique.

The Applet Life Cycle

Here is the sequence of events that make up the life cycle of an applet:

1. First, an applet is born. This occurs when the applet is loaded into the
browser and instantiated. As soon as the applet has been instantiated, the
browser invokes the applet’s i ni t () method.

2. After the applet has been initialized, the browser starts it going. The browser
invokes the applet’s st ar t () method.

108

TAKING PART IN YOUR APPLET'S LIFE CYCLE

browser begins adialog with the new
applet instance to move the appl et
through itslife cycle

initialize the applet

/ init()
begin executing the applet ——— = stop executing the appl et
start() B B— st op()

quit the browser
destroy()

Figure 7.7 The life cycle of an applet.

3. If the user changes to a Web page other than the one that contains the applet,
the applet goes to sleep. The browser invokes the applet’s st op() method
when this occurs. If the user turns back to the original Web page that did con-
tain the applet, the applet wakes up. The browser invokes its st ar t () method
again when this occurs.

4. Finally, at some point when the applet is no longer needed, it goes away. This
would occur if the user quit the browser, for example. At this point, the
browser invokes the applet’s dest r oy () method.

Figure 7.7 shows the life cycle of an applet.

Hooking In

You don’t have to be a mere spectator to these events. Remember, you define your
own Applet class. All you have to do to respond to these method invocations is to
supply the appropriate method, defined as Java expects it to be defined. Here are
the method definitions for each of the four life cycle methods just discussed:

public void init() {
}

public void start() {
}

public void stop() {
}

public void destroy() {

}
109

INTRODUCTION TO METHODS

As you can see by these method definitions, the methods do not take any val-
ues as parameters and do not return a value. They must be declared as publ i c
Since the Applet class as well as these methods are declared as publ i ¢ these
methods are able to be invoked from anywhere. (As you'll see in Chapter 10, only
methods defined like this can be invoked from anywhere; other methods have re-
strictions.) For these four life cycle methods, this ability to be invoked from any-
where enables the browser to invoke these methods when it needs to tell the
applet to enter a new phase in life.

You can decide to implement any of these, none of these, or all of these, ac-
cording to the needs of your applet. Mix and match as you please. As earlier ex-
amples have shown, you don’t need to supply any of these methods for your
applet if you don’t want to.

What should you do with i nit()? Or start()? Or any of them? Here are
some things that you might think about doing with each of these four methods:

e init(): This method is invoked only once in the applet’s life—the very first
time the user runs the applet. You might want to initialize your applet’s user
interface by creating windows, buttons, and other graphical elements. For ex-
ample, the SimpleDraw applet provides an i nit () method to create the
shape and color selection choices. i ni t () is probably the method you'll use
the most.

e start(): This method is invoked every time the browser starts up your
applet. For example, if the user turns to the Web page containing this applet,
st art () will be invoked. If the user then turns to another page and then turns
back, st art () will be invoked again. This is different from i ni t (), which is
only invoked the very first time. If you are performing any animation or play-
ing any sounds, you might want to start these going inside the start ()
method.

e stop(): This method is invoked every time the browser stops your applet.
There will be one st op() invocation for every st art (). You can take this time
to halt any animation or sound that you might have begun in st art ().

e destroy() This method is invoked only once—at the very end of an ap-
plet’s life. There will be one dest r oy() invocation for every i ni t (). When
the browser unloads the applet—for example, if the user quits the browser—
this method will be invoked. You might take this time to free any resources
you’ve allocated in the system. It’s very likely that you’ll hardly ever write a
dest r oy()method.

There are a number of other methods that you can write for your applet that
will be invoked in other situations. These include methods that let you know

110

SAMPLE PROGRAMS

things like when the user clicked the mouse, when the user resized your applet, or
when the user typed in text from the keyboard. You'll see a number of these other
applet methods as you progress.

Sample Programs

The following three sample programs illustrate the basics of methods that we’ve
covered in this chapter.

LifeCycle.u

Let’s take a look at the applet’s life cycle as it unfolds when we run an applet.
When you run an applet in a browser, the applet might bounce back and forth be-
tween the methods start () and st op(). If the user turns away from the Web
page containing the applet, the browser will invoke the applet’s st op() method.
However, the browser will not yet destroy the applet. If the user turns back to the
Web page containing the applet, the browser will invoke the applet’s start ()
method again. Only when the user quits the browser (or the browser unloads the
applet for some reason of its own) will the applet ever receive dest r oy().

Since we're running the applet in the Applet Viewer, we can’t simulate this
behavior of stopping the applet and restarting it, but we can come close. At least,
we can see the progression from i ni t () to st art () when we run the applet and
then on to st op() and dest r oy()when we shut it down.

To see this, go to the subfolder 07. 01- i fe cycl ein the Learn Java Projects
folder. Make this applet in the usual way (double-clicking the project file Li f eCy-
cl e. p then selecting Make from the Project menu). Drop the file Li f eCycl e. ht n
onto the Metrowerks Java icon. The applet will start up inside the Applet Viewer,
and you'll see messages in the Java Output window indicating that the browser
did indeed invoke i ni t () and st ar t (). This is shown in Figure 7.8.

Now, close the Applet Viewer. This will end the LifeCycle application. The
Applet Viewer will invoke the applet’s st op() and dest r oy() methods. You can
see these messages appear in the Java Output window, as shown in Figure 7.9.

Check out the source code by opening Li f eCycl e. j avaThe LifeCycle applet
provides a method for each of the four stages in the applet’s life. It implements
init() start(), stop(), and destroy(). All that the LifeCycle applet does with
these methods is write a line to the Java Output window to let you know that they
were invoked. Of course, you can do much more complicated things in these
methods, from creating sophisticated user interfaces to starting animation and
other multimedia effects. All we do here, however, is indicate that the Applet
Viewer is in fact communicating with the applet to let it know what stage in life it
has reached.

111

INTRODUCTION TO METHODS

112

Java Output

Executing: javai sun.applet. Appletliewer

fBlueHorse /LearnfZ0davaf20PrajectsB20KE /O7 . 01820-8201 i fef20cycles/LifeCycle. html
initca
startdl =[I= Applet Diewer: LifeCycle.class =
Comp letedcOl

applet started

&

Figure 7.8 The LifeCycle applet after it has started running. (Notice that the Applet
Viewer is still running, so the applet has not yet received st op() and destroy().)

|§D§ Java Dutput

Executing: javai sun.applet. Appletliswer
/BlueHorse /LearnfZ20Javaf20Praject=820KR /07 . 01820-8201 i fef20cycle/LifeCycle. html

inita
starto)
Comp letedcO?

stopl 2
destrogy)

Figure 7.9 Closing the Applet Viewer so that the applet goes away. (The applet
completes the rest of its life cycle methods by invoking st op() and dest roy().)

InitMethod.p

By using the life cycle methods as hooks into your applet, you can customize your
applet by invoking other methods. Go to the subfolder 07. 02- i ni t in the Learn
Java Projects folder and double-click the project file I ni t Met hod. pto see an ap-
plet that illustrates this.

The applet defined here provides ani ni t () method to invoke its own custom
methods. The progression from the i ni t () method to the custom methods is il-
lustrated in Figure 7.10.

Make the applet, then drop the HTML file in this folder onto the Metrowerks
Java application, and you'll see the Java Output window reflect the progression of
methods shown in Figure 7.10. Let’s take a quick look at the source code to see
how these methods are implemented.

SAMPLE PROGRAMS

browser tells your
applet to

initialize itself ——p

thisgivesyou a
chance to invoke
methods you've
written to perform set UpQGUI ()
other tasks

makeW ndowl()

.

makeW ndow2()

Figure 7.10 Executing your own methods from one of the life cycle methods.

Stepping Through the Source Code

The intent of this applet is to illustrate how you might combine your own meth-
ods with methods invoked for you by Java. For example, when you prepare a user
interface by creating windows, text fields, buttons, and so on, you only want to
create these user interface objects once and then just hang onto them for the life of
the applet. The i ni t () method is a good place to create a user interface since
i ni t () is executed only once during the life of an applet.

Open up the file | ni t Met hod. j avao browse the source code. Looking at this
applet, you can see that it defines ani ni t () method. The i ni t () method invokes
set UpQUI ()after writing a message to the Java Output window:

public void init() {
Systemout.printin("init()");
set UpGUI () ;

The set UpGUl () method relies on two other methods, called makeW ndowl ()
and makeW ndow2() These custom methods all write messages to the Java Output
window, but they don’t do anything else yet. You can see, however, how you can
invoke your own methods at different times in the applet’s life—in this case,
when the applet is first loaded into the system. You'll use this technique all the
time when writing your own applets.

113

INTRODUCTION TO METHODS

114

Average.u

You learned about parameters and return values in this chapter, so let’s take a
look at an applet that uses methods that take parameters and return values. Go to
the subfolder named 07. 03- aver agein the Learn Java Projects folder. Make the
applet and drop the file Aver age. ht nlonto the Metrowerks Java icon. You'll see
three lines appear in the Java Output window as illustrated in Figure 7.11. This
applet uses a method that finds the average of three numbers. We’ve invoked this
method three times and used Syst em out . pri nt | n(pach time to show the re-
turned value in the Java Output window. Let’s take a look at the source code.

Stepping Through the Source Code

Open Aver age. j avao view the Java source code. Take a look at the top four lines
of the st ar t () method:

public void start() {
int average;

average = findAverage(10, 20, 30);
System out . println(average);

After declaring an i nt variable, st art () invokes f i ndAver age()fi ndAver age()
takes three parameters, and these values are supplied as 10, 20, and 30. Since f i n-
dAver age()returns an i nt value, the result of this method invocation is assigned
to the variable aver age The next line displays this result in the Java Output
window.

Sf=——————— Java lutput ==————[1|=
Executing: jowai sun.applet. Appletlliswer B
/B lueHor=e /learn820Jauaf20Projec t=820KR /07 | 02820-F200verage AAverage . himl |
20

-1

10047

Comp letedi0:

Sl

2] [

Figure 7.11 Displaying the average of three sets of numbers in the Java Output window.

After this, st art () invokes f i ndAver age()two more times, each time pass-
ing it a different set of parameters. fi ndAver age()responds each time by per-
forming the calculation for the average based on the parameters supplied to it and
returns the result. Each time, the new result is assigned to aver ageand displayed
in the Java Output window:

average = findAverage(-400, 182, 213);
System out . println(average);

average = findAverage(9901, 20201, 41);
System out. println(average);

The method f i ndAver age()is defined as follows:

int findAverage(int nunml, int nun2, int nunB) {
return (numl + nun? + nunB)/3;

}

findAver age(Js three i nt parameters are declared as numl, nun® and nun8.
From the method declaration, you can see that fi ndAver age()returns an i nt
value. This means it must provide a r et ur nstatement that returns an i nt. f i nd-
Aver age() uses some of the arithmetic operators you saw in Chapter 6 to calcu-
late the average for the three parameters. It then returns the result of this
calculation.

The first time st art () invokes fi ndAver age() numi is equal to 10, nun® is
equal to 20, and nunB is equal to 30. The second time start () invokes fi nd-
Aver age() nunlis equal to —400, nun® is equal to 182, and nunBis equal to 213.
And the third time? You can probably guess by now by looking back at the
st art () method and seeing how it was invoked; nunl is equal to 9901, nun® is
equal to 20201, and nunBis equal to 41.

Review

This chapter explained how to define and invoke methods. You've learned that
methods often invoke other methods and that methods can communicate with
each other by passing parameters and returning values.

You've also seen what happens when the browser (or Applet Viewer) loads
your Applet class and begins to run your applet. The browser creates an instance
(that is, an object) based on your Applet class. The browser then tries to invoke its

REVIEW

115

INTRODUCTION TO METHODS

116

life cycle methods (i nit (), start(), stop(), and destroy()) so that the applet
can do things like arrange its user interface or shut down when it is no longer on
the screen. By supplying these methods for your applet, you can make your ap-
plet do the things you want it to do, when you want it to do them.

What's Next?

Now that you know how to write chunks of code called methods, let’s next turn
our attention to making these methods control what your program does. This
means writing methods that make decisions, choose to execute one block of code
over another block, and repeat certain statements to perform more complex oper-
ations. Chapter 8 covers these topics by looking at flow control. Armed with this
knowledge, you'll be able to add sophisticated behavior to your objects in
Chapter 9.

Chapter 8

Controlling Your
Program’s Flow

The previous chapter showed you how to write and invoke methods—methods
that so far have followed a straight-forward, sequential progression: The com-
puter executed the first statement, then the second, then the third, and so on, and
when it reached the end of the method, it returned.

There’s much more to writing methods than that! One powerful feature of all
programming languages is the ability to control the flow through your program.
For example, you can write code that will execute only if a certain condition is
met. You can write code that loops back to an earlier statement and begins again.
You can write all sorts of fancy programs by using flow control. That’s what this
chapter will cover.

Boolean Values

Before we proceed, there’s one more data type that we need to cover because we’'ll
start to make reference to it here. This is data type bool ean A Boolean value can
take only one of two values: true or false. Here’s an example:

bool ean j aval sFun;

javal sFun = true;

You might also say

javal sFun = fal se;

With Boolean values, there are no other possibilities, such as “sometimes” or “oc-

casionally.” It’s either true or false. That's it. (In Java, the values trueand f al se
are part of the language.)

117

CONTROLLING YOUR PROGRAM'S FLOW

By the Way

118

If you don’t set the Boolean to anything, its value is false, as in
bool ean di nosaur sAr ePurpl e;

At this point, di nosaur sAr ePur pl das the value of false (which is the case, isn’t
it?).

You'll soon see that Boolean values have many uses in Java. This simple data
type allows for the creation of some very sophisticated programs!

What kind of word is Boolean anyway? This term was derived from the
name of a 19th-century mathematician named George Boole. Boole deter-
mined the rules involving operands that could only take the values of true
or false. It was more than a century later before his rules were applied to the
field of computer science, where they were found to be crucial to computer
and software design. Hence, from Boole, we have Boolean values repre-
sented by the data type bool ean

In preceding chapters, we’ve written a number of simple methods; now it’s
time to go further. Here, you'll learn a few advanced ways to implement your
methods that draw upon the computer’s abilities to test for certain conditions.
After the computer has performed a test—say, by testing whether one number is
less than another number—the computer can execute different steps depending
on the outcome of that test.

This chapter borrows heavily from Chapter 6 of Learn C on the Macintosh, by
Dave Mark. The two chapters are not identical, however, since there are a number
of differences between C and Java. Legions of C programmers have successfully
learned all about flow control with Learn C on the Macintosh, so who are we to
tinker with success?

Flow Control

The programs you’ve written so far have all consisted of a straightforward series
of statements, one right after the other. Every statement is executed in the order it
occurred.

Flow control is the ability to define the order in which your program’s state-
ments are executed. Java provides several keywords you can use in your program
to control your program’s flow. One of these is the keyword i f.

The if Statement

The keyword i f allows you to choose among several options in your program. In
English, you might say something like this:

If it’s raining outside, I'll bring ny unbrella; otherwise, | won't.

In the previous sentence, you're using the word if to choose between two options.
Depending on the weather, you'll do one of two things: You'll bring your um-
brella or you won't bring your umbrella.

Java’si f statement gives you this same flexibility. Here’s an example:

public class Tester extends java.appl et. Applet {
public void init() {
int nylnt = 5;

if (mylnt == 0)
Systemout.printin("nylnt is equal to zero.");
el se
Systemout.printin("nylnt is not equal to zero.");

}

This applet, named Tester, defines ani ni t () method. This method declares ny| nt
to be of typei nt and sets the value of nyl nt to 5. Next, we use thei f statement to
test whether ny| nt is equal to 0. If ny| nt is equal to 0 (which we know is not true),
we'll print one string; otherwise, we’ll print a different string. As expected, this
program prints the string

nylnt is not equal to zero

Forms of the if Statement
An i f statement can come in two forms. The first, known as plain i f, fits this

pattern:

i f (bool ean expression)
st at ement

FLOW CONTROL

119

CONTROLLING YOUR PROGRAM'S FLOW

120

An i f statement will always consist of the keyword i f, a left parenthesis, a
bool ean expr essi gm right parenthesis, and a st at ement (We’'ll define what an
expression is and what a statement is in a minute.) This first form of i f executes
the statement if the Boolean expression in parentheses is true. An English example
of the plain i f might be

If it’s raining outside, 1'lIl bring ny unbrella.

Notice that this statement tells us what will happen only if it’s raining outside. No
particular action will be taken if it isn’t raining.
The second form of i f, known as i f - el se fits this pattern:

if (bool ean expression)
st at ement

el se
st at ement

Ani f - el sestatement will always consist of the keyword i f, a left parenthe-
sis, a bool eanexpr essi on a right parenthesis, a st at enent, the keyword el se,
and a second st at ement This form of i f executes the first statement if the Bool-
ean expression is true and executes the second statement if the Boolean expres-
sion is false. An English example of ani f - el sestatement might be

If it’s raining outside, 1'Il bring ny unbrella; otherwise, | won't.

Notice that this example tells us what will happen if it’s raining outside (I'll bring
my umbrella) and if it isn’t raining outside (I won’t bring my umbrella).

The example programs presented later in the chapter demonstrate the proper
use of both i f and i f - el se Our next step at this point is to define our terms.

Expressions

In Java, an expression is anything that has a value. Two kinds of expressions are:
numeric expressions, which have numeric values, and Boolean expressions,
which can only have the values of true or false.

Numeric Expressions

Variables that represent numbers, such as variables of type i nt, are a type of nu-
meric expression since a variable will always have a value. (Remember, Java ini-
tializes your numeric variable to 0 for you if you don't assign it a value.) Here are
some examples of numeric expressions:

mylnt + 3
(nmylnt + anotherint) * 4
nmyl nt ++
An assignment statement is also an expression. Can you guess the value of an
assignment statement? The value of an assignment statement is the value of its

left side after the assignment. Check out the following code fragment:

mylnt = 5;
mylnt += 3;

Both of these statements qualify as expressions. The value of the first expression is

5. The value of the second expression is 8 (because we added 3 to nyl nt’s previ-
ous value).

Boolean Expressions
Earlier, we defined thei f statement as follows:

i f (bool ean expression
st at ement

We then said that the statement gets executed if the expression is true. Let’s look
at Java’s concept of truth.

Everyone has an intuitive understanding of the difference between true and
false. We would all agree that the following statement is false:
5 equals 3

We would also agree that the following statement is true:

5 and 3 are both greater than O

EXPRESSIONS

121

CONTROLLING YOUR PROGRAM'S FLOW

122

This intuitive grasp of true and false carries over into the Java language. So, a
Boolean expression is an expression that can be evaluated in terms of truth or
falsehood. Note that Boolean expressions are different from numeric expressions.
You cannot write Java code like this:

int nylnt = 27;

if (nylnt) // this won’t work!
Systemout.printin("nylnt is not equal to 0");

This code is not allowed in Java, and the compiler will tell you in no uncertain
terms. The compiler will complain that my| nt in the line of code

if (nylnt)

is a numeric expression. The Java compiler requires the expression in thei f state-
ment to evaluate to true or false. Before we see how to turn this line of code into a
Boolean statement that Java will accept, let’s take a look at comparative operators.

Comparative Operators

Java has a special set of operators called comparative operators. A comparative
operator compares its left side with its right side and produces a value of either
true or false, depending on the relationship of the two sides.

For example, the operator == determines whether the expression on the left is
equal in value to the expression on the right. In the following, the expression eval-
uates to true if nyl nt is equal to 5 and to false if my| nt is not equal to 5:

nylnt ==
Here’s an example of the == operator at work:

if (mylnt == 5)
Systemout.printin("nylnt is equal to 5");

If nyl nt is equal to 5, the Boolean expression nyl nt == b5evaluates to true and
System out . printl n(gets executed. If myl nt isn't equal to 5, the Boolean ex-
pression evaluates to false and Syst em out . pri nt | n(Js skipped. Just remember,
the key to triggering an i f statement is a Boolean expression that evaluates to
true.

COMPARATIVE OPERATORS

Table 8.1 shows some other comparative operators. You’'ll see some of these
operators in the example programs later in this chapter.

Table 8.1 Some comparative operators.

Operator Resolves to true if...
== Left side is equal to right.
<= Left side is less than or equal to right.
>= Left side is greater than or equal to right.
< Left side is less than right.
> Left side is greater than right.

I= Left side is not equal to right.

Back in the last section, we saw some code that would not compile in Java be-
cause the expression in the i f statement was not a Boolean expression:

int mylnt = 27,

if (nylnt) [// this won’t work!
Systemout.printin("nylnt is not equal to 0");

Knowing what we now know about the comparative operators, how can we
fix this code? One way to make this work is instead of writing

if (mylnt)
you can write
if (mylnt '=0)
The expression myl nt ! = 0is now a Boolean expression that has a true or

false value: Either nyl nt is equal to 0 or it is not. The operator ! = means “is not
equal to.”

123

CONTROLLING YOUR PROGRAM'S FLOW

124

Logical Operators

Our next set of operators, collectively known as logical operators, is modeled on
the mathematical concept of truth tables. If you don’t know much about truth
tables (or are just frightened by mathematics in general), don’t panic. Everything
you need to know is outlined in the next few paragraphs.

The first of the set of logical operators is the ! operator. The ! operator turns
true into false and false into true. Table 8.2 shows the truth table for the ! operator.

Table 8.2 Truth table for the ! operator.

(boolean expression) (!boolean expression)
true false
false true

If the Boolean expression is true, applying the ! operator to the same expres-
sion yields the value false. If the expression is false, applying the ! operator to the
same expression yields the value true. The ! operator is commonly referred to as
the NOT operator; !A is pronounced “Not A.”

Here’s a piece of code that demonstrates the ! operator:

bool ean nyFirstBool ean, nySecondBool ean;

myFi r st Bool ean = fal se;
mySecondBool ean = ! nyFi r st Bool ean;

In this code, we first declare two Booleans. We then assign the value f al seto the
first Boolean, use the ! operator to turn the f al seinto atrue, and assign it to the
second Boolean. This is very important. Take another look at Table 8.2. The ! oper-
ator converts true into false and false into true.

The previous chunk of code translated mySecondBool earfrom f al seto t r ue.
Now, if we encounter the code

i f (mySecondBool ean)
System out. printl n("nySecondBool ean nust be true");

System out . pri ntl n(jvill get executed, and the message

LOGICAL OPERATORS

mySecondBool ean rmust be true

will appear on the screen.
Now take a look at this piece of code:

i f (!mySecondBool ean)
System out . printl n("nySecondBool ean nmust be fal se");

This time, Syst em out . pri nt | n(will get executed if mySecondBool eans false.
Do you see why? If mySecondBool earis false, then ! mySecondBool eamust be
true.

The ! operator is a unary operator. Unary operators operate on a single ex-
pression (the expression to the right of the operator). The other two logical opera-
tors, & and | |, are binary operators. Binary operators, such as the == operator
and all the other comparative operators presented earlier, operate on two expres-
sions, one on the left side and one on the right side of the operator.

The && operator is commonly referred to as the AND operator. The result of
an &&operation is true if, and only if, both the left side and the right side are true.

Here’s an example:

bool ean hasCar, hasTi neToG veRi de;

hasCar = true;
hasTi nreToG veRi de = true;

if (hasCar && hasTi meToG veRi de)
Systemout.printin("Hop in - 1'll give you a ride!l");
el se
Systemout.println("l’ve either got no car, no tine, or neither");

This example uses two variables. One indicates whether the program has a car;
the other, whether the program has time to give us a ride to the mall. All philo-
sophical issues aside (Can a program have a car?), the question of the moment is,
Which Syst em out . pri nt | n(3tatement will fire? Since both sides of the && were
set to true the first Syst em out . pri ntl n()will be invoked. If either one (or
both) of the variables were set to fal sg the second System out. println()
would be invoked. Another way to think of this is that we’ll get a ride to the mall
only if our friendly program has a car and has time to give us a ride. If either of
these is not true, we’re not getting a ride. By the way, notice the use here of the
second form of i f: thei f - el sestatement.

125

CONTROLLING YOUR PROGRAM'S FLOW

The | | operator is commonly referred to as the OR operator. The result of an
| | operation is true if either the left side or the right side, or both sides, of the | |
are true. Put another way, the result of an | | is false if, and only if, both the left
side and the right side of the | | are false.

Here’s an example:

bool ean not hi ngEl seOn, newEpi sode;

not hi ngEl seOn = true;
newEpi sode = true;

If (newEpi sode || not hi ngEl seOn)
Systemout.printin("Let’s watch Star Trek!");
el se
Systemout.println("Sormething else is on and |I've seen this one.");

This example uses two variables to decide whether we should watch “Star Trek”
(your choice: Classic Trek, TNG, DS9, or Captain Kate). One variable indicates
whether anything else is on right now, and the other tells you whether this epi-
sode is a rerun. If this is a brand-new episode or if nothing else is on, we’ll watch
“Star Trek.”

Here’s a slight twist on the previous example:

bool ean not hi ngEl seOn, itsARerun;

not hi ngEl seOn = true;
itsARerun = fal se;

if (('itsARerun) || nothingEl seOn)
Systemout.printin("Let’s watch Star Trek!");
el se

Systemout.println("Sonmething else is on and its a rerun");

This time, we’ve replaced the variable newEpi sodewith its exact opposite, i t s-
ARer un Look at the logic that drives thei f statement (you don’t need to be Spock
or Tuvok to figure it out!). We're combining i t sARer unwith the ! operator. Be-
fore, we cared whether the episode was a new episode. This time, we are con-
cerned that the episode is not a rerun.

Both the & and the | | operators are summarized in Table 8.3. If you look in
the folder Learn Java Projects, you'll find a subfolder named 08.01 - truth
tester. The file trut hTest er. j avacontains the three examples we just went

126

LOGICAL OPERATORS

through. Take some time to play with the code. Take turns changing the variables
from t r ueto f al seand back again. Use this code to get a good feel for the !, &&
and | | operators.

Table 8.3 Truth table for the && and || operators.

expression A && expression A |

expression A expression B expression B expression B
true true true true
true false false true
false true false true
false false false false

Detail
There’s another operator supplied by Java that affects flow control. This op-
erator is not used very often, but you might see it around. This operator is
written as ?: (yes, you're reading that right: “question-mark colon”), and it
allows your program to do one of two things, depending on a Boolean ex-
pression. Here’s the format:

bool ean expression? action if true: action if false
This is somewhat the same as

i f (bool ean expression)
action if true

el se
action if fal se

except that the ?: operator can be a little more compact at times.

One thing this operator is particularly useful for is assigning a value to a
variable based on a Boolean expression. For example, you can assign a string
object to a new string instance, depending on the result of a Boolean expres-
sion, like this:

127

CONTROLLING YOUR PROGRAM'S FLOW

128

int i = 5;

Strings =i <3 ? newString ("i <3") : new String ("i >= 3");
In this case, the string s would hold the text “i >= 3” at the end of these two
statements. Check out examples on the Web at JavaSoft’s site and turn to the
Java Language Specifications for more information. You can also look in

Dave Mark’s Learn C on the Macintosh for some good examples and advice
concering this operator.

Compound Expressions

All of the examples presented so far have consisted of relatively simple expres-
sions. Here’s an example that combines several operators:

int nyl nt;

nylnt = 7,

if ((mylnt >= 1) & (nylnt <= 10))
Systemout.printin("nylnt is between 1 and 10");

el se

Systemout.printIn("nylnt is not between 1 and 10");

This example tests whether a variable is in the range between 1 and 10.
The key here is the expression

(nylnt >= 1) && (nylnt <= 10)
This expression lies between the i f statement’s parentheses and uses the &&oper-

ator to combine two smaller expressions. Notice that the two smaller expressions
are each surrounded by parentheses to avoid any ambiguity.

Statements
Near the beginning of the chapter, we defined thei f statement as

if (expression)
st at enent

We've covered expressions quite thoroughly. Now, we’ll turn our attention to
statements.

At this point in the book, you probably have a pretty good intuitive model of
the statement. You would probably agree that this is a statement:

nmylnt = 7;
But is this one statement or two?

if (isCold)
Systemout.println("Put on your sweater!");

The previous code fragment is a statement within another statement. The
System out . pri nt| n(Jesides within a larger statement, thei f statement.

The ability to break your code out into individual statements is not a critical
skill. Getting your code to compile, however, is critical. As we introduce new
types of statements, pay attention to the statement syntax. And pay special atten-
tion to the examples. Where do the semicolons go? What distinguishes this type
of statement from all other types?

As you build up your repertoire of statement types, you'll find yourself using
one type of statement within another. That's perfectly acceptable in Java. In fact,
every time you create an i f statement, you'll use at least two statements, one
within the other. Take a look at this example:

if (myVar >= 1)
if (nyVar <= 10)
Systemout.printin("nyVar is between 1 and 10");

This example uses an i f statement as the statement for another i f statement.
It invokes System out. println()if both i f expressions are true—that is, if
nmy Var is greater than or equal to 1 and less than or equal to 10. You could have ac-
complished the same result with this piece of code:

if ((nmyVar >=1) && (nyVar <=10))
Systemout.println("nyVar is between 1 and 10");

Take a look at another example:
if (myvar !'=0)

if ((/nyvar) < 1)
Systemout.println("nyVar is in range");

STATEMENTS

129

CONTROLLING YOUR PROGRAM'S FLOW

130

Detail

One thing you don’t want to do in Java is divide an i nt value by 0. Any i nt
divided by 0 will cause Java to halt your program. (Actually, dividing by 0 would
cause Java to “throw an exception,” which would, by default, halt your program.
You'll learn about exceptions later in this book.) In the preceeding example, the
first expression tests to make sure that nyVar is not equal to 0. If nmyVar is equal to
0, the second expression won't even be evaluated! The sole purpose of the first i f
is to make sure that the second i f never tries to divide by 0.

Java is pretty smart about what to evaluate. Imagine what would happen if
we wrote the code this way:

if ((myvar !=0) & ((1/ nyVar) < 1))
Systemout.println("nyVar is in range");

As it turns out, the left half of the &&operator evaluates to false, the right half
of the expression will never be evaluated, and the entire expression will evaluate to
false. Why? Because if the left operand is false, it doesn’t matter what the right op-
erand is; true or false, the expression will evaluate to false. Be aware of this as you
construct your expressions.

While i nt values will cause Java to stop your program if you divide them by
0, this is not true with floating-point values! In Java, floating-point values re-
flect the mathematical concept that division by zero is equal to infinity.
Floating-point values understand the concept of infinity, and it is perfectly
legal to divide Java’s floating-point values by 0. You'll learn more about
floating-point values soon.

Curly Braces Revisited

Earlier, you learned about the curly braces ({ }) that delimit the beginning and
ending of classes and methods. These braces also play an important role in state-
ment construction. Just as parentheses can be used to group terms of an expres-
sion together, curly braces can be used to group multiple statements together.
Here’s an example:

bool ean i ghtlsOn;
lightlsOn = true;

if (lightlsOn) {
Systemout.println("turn off");
lightlsOn = fal se;

CURLY BRACES REVISITED

In the example, if | i ght | sOnis true, both of the statements in curly braces
will be executed. A pair of curly braces can be used to combine any number of
statements into a single superstatement, also known as a block. You can use this
technique anywhere a statement is called for.

Curly braces can be used to organize your code, much as you would use pa-
rentheses to ensure that an expression is evaluated properly. This concept is espe-
cially appropriate when dealing with nested statements. Consider this code, for
example:

if (mylnt >= 0)
if (nylnt <= 10)
Systemout.printin("nylnt is between O and 10");
el se
Systemout.println("nylnt is negative");

Do you see the problem with this code? It’s tricky, but think about this: Which
i f does the el sebelong to? As written (and as formatted, which makes it tricky),
the el selooks as though it belongs to the firsti f. That is, if nyl nt is greater than
or equal to 0, the second if is executed; otherwise, the second Sys-
tem out . pri ntl n()sinvoked. Is this right?

Nope. As it turns out, an el sebelongs to the i f closest to it (the second i f, in
this case). Here’s a slight rewrite:

if (mylnt >= 0)
if (mylnt <= 10)
Systemout.printin("nylnt is between 0 and 10");
el se
Systemout.printin("nylnt is not between 0 and 10");

One point here is that formatting is nice, but it won’t fool the compiler. More
importantly, this example shows how easy it is to make a mistake. Check out this
version of the code:

if (mylnt >= 0) {
if (nylnt <= 10)
Systemout.printin("nylnt is between 0O and 10");
} else
Systemout.println("nylnt is negative");

131

CONTROLLING YOUR PROGRAM'S FLOW

132

Do you see how the curly braces help? In a sense, they act to hide the second
i f inside the first i f statement. There is no chance for the el seto connect to the
hiddenii f.

Curly braces (as well as parentheses) are great for clarifying your code, and
you should feel free to use them wherever it helps make your code more readable.
No one we know ever got fired for using too many parentheses or too many curly
braces.

Where to Place the Semicolon

So far, the statements we’ve seen fall into two categories. The first category is sim-
ple statements, and the second is compound statements.

Simple Statements

Method invocations, such as
addTheseNunber s(10, 20);

and assignment statements, such as
myBool ean = true;

are examples of simple statements. Always place a semicolon at the end of a sim-
ple statement, even if it is broken over several lines, like this:

Systemout. println("Connect the dots using only four I|ines:

* * *

* * *

* * *x"
)

Compound Statements

Statements made up of several parts—including, possibly, other statements—are
called compound statements. Compound statements obey some pretty strict
rules of syntax. The i f statement, for example, always looks like this:

if (bool ean expression)
st at ement

THE WHILE STATEMENT

Notice there are no semicolons in this definition. The statement part of the i f
can be a simple statement or a compound statement. If the statement is simple,
follow the semicolon rules for simple statements by placing a semicolon at the
end of the statement:

if (x == 3)
y =4

If the statement is compound, follow the semicolon rules for that particular type
of statement:

if (x == 3)
if (y ==2)
z = 1;

The Loneliest Statement

A single semicolon qualifies as a statement, albeit a somewhat lonely one. For ex-
ample,

if (bored)

)

is a code fragment that is a legitimate (and thoroughly useless) i f statement. If
bored is true, the semicolon statement gets executed. The semicolon by itself
doesn’t do anything but fill the bill where a statement was needed. There are
times where the semicolon by itself is exactly what you need.

The while Statement

The i f statement uses the value of an expression to decide whether to execute or
to skip over a statement. If the statement is executed, it is executed just once. An-
other type of statement, the whi | e statement, repeatedly executes a statement as
long as a specified expression is true. The whi | estatement follows this pattern:

whi l e (bool ean expression
st at enent

The whi | e statement is also known as a whi | e loop because after the state-

ment is executed, the whi | eloops back to reevaluate the expression (Figure 8.1). If
the result of the expression is true, the statement is executed, and then the

133

CONTROLLING YOUR PROGRAM'S FLOW

134

whi | e (bool ean expressi on)
fal sev—l—v true loop back

continue on... st at enent

v

Figure 8.1 A diagram of the whi | eloop.

expression is evaluated again. If the expression is false, the statement is skipped,
and the program continues on.
Here’s an example of the whi | eloop in action:

int i;

while (++i < 3)
System out. println("Looping: " + i);

Systemout.println("W are past the while [oop");

This example starts by declaring a variable, i, to be of type i nt; i is then ini-
tialized to 0. Next comes the whi | eloop. The first thing the whi | eloop does is
evaluate its expression. The whi | eloop’s expression is

++i < 3

Before this expression is evaluated, i has a value of 0. The prefix notation
used in the expression (++i) increments the value of i to 1 before the remainder of
the expression is evaluated. The evaluation of the expression results in true since 1
is less than 3. Since the expression is true, the whi | e loop’s statement, a single
System out . pri nt| r)(statement, is executed. Here’s the output after the first
pass through the loop:

Looping: 1

Next, the whi | eloops back and reevaluates its expression. Once again, the
prefix notation increments i, this time to a value of 2. Since 2 is less than 3, the

THE WHILE STATEMENT

expression evaluates to true, and the Syst em out . printl n()s executed again.
Here’s the output after the second pass through the loop:

Looping: 1
Loopi ng: 2

Once the second Syst em out . pri nt| n(gompletes, it's back to the top of the
loop to reevaluate the expression. Will this never end? Once again, i is incre-
mented, this time to a value of 3. Aha! This time, the expression evaluates to false
since 3 is not less than 3. Once the expression evaluates to false, the whi | eloop
ends. Control passes to the next statement, the second Syst em out . pri nt!| n(jn
our example:

Systemout.printIn("W are past the while | oop");

The whi | eloop was driven by three factors: initialization, modification, and
termination. Initialization is any code that affects the loop but occurs before the
loop is entered. In our example, the critical initialization occurred when the vari-
ablei was set to 0.

Style
In a loop, you'll frequently use a variable that changes value each time
through the loop. In our example, the variable i was incremented by 1 each
time through the loop. The first time through the loop, i had a value of 1.
The second time, i had a value of 2. Variables that maintain a value based on
the number of times through a loop are known as counters.

Traditionally, programmers have given counter variables simple names,
such as i, j, and k (as mentioned earlier, this is an old FORTRAN conven-
tion). In the interest of clarity, some programmers use such names as
count eror | oopCount er The nice thing about names like i, j, and k is that
they don’t get in the way; they don’t take up a lot of space on the line. On the
other hand, your goal should be to make your code as readable as possible,
so it would seem that a name like count er would be better than the uninfor-
mativei,j, ork.

Once again, pick a style you are comfortable with and stick with it!

Within the loop, modification is any code that changes the value of the loop’s
expression. In our example, the modification occurred within the expression itself
when the counter i was incremented.

135

CONTROLLING YOUR PROGRAM'S FLOW

136

Termination is any condition that causes the loop to end. In our example, ter-
mination occurs when the expression has a value of false. This occurs when the
counter i has a value that is not less than 3. Take a look at this example:

int i;
i = 1;

while (i < 3) {
Systemout. println("Looping: " + i);
i ++;

)

Systemout.println("W are past the while [oop");

This example produces the same results as the previous example. This time,
however, the initialization and modification conditions have changed slightly. In
this example, i starts with a value of 1 instead of 0. In the previous example, the
++ operator was used to increment i at the top of the loop. This example modifies i
at the bottom of the loop.

Both of these examples show different ways to accomplish the same end. The
phrase “There’s more than one way to eat an Oreo” sums up the situation per-
fectly. There will always be more than one solution to any programming problem.
Don’t be afraid to do things your own way. Just make sure that your code works
properly and is easy to read.

The for Statement

Another way to control loops in your program is by using the f or statement. The
f or statement is similar to the whi | estatement, following the basic model of ini-
tialization, modification, and termination. Here’s the pattern for the f or state-
ment:

for (initializatiorexpression test expression nodification
expression)
st at enent

The first expression represents the f or statement’s initialization. Typically,
this expression consists of an assignment statement, setting the initial value of a
counter variable. This first expression is evaluated once, at the top of the loop.

THE FOR STATEMENT

The second expression is identical in function to the expression in a whi | e
statement, providing the termination condition for the loop. This expression is
evaluated and tested each time through the loop, before the statement is executed.

Finally, the third expression provides the modification portion of the f or
statement. This expression is evaluated at the bottom of the loop, immediately fol-
lowing execution of the statement.

Warning

All three of these expressions are optional and may be left out entirely. For
example, here’s a f or loop that leaves out all three expressions:

for (; ;)
doSonet hi ngFor ever () ;

Since this loop has no terminating expression, it is known as an infinite
loop. Infinite loops are generally considered bad form and should be

avoided like the plague!

The f or loop can also be described in terms of a whi | eloop:

initializationexpression
while (testexpression) {
st at enent
nodi fi cati onexpression

By the Way

Since you can always rewrite a f or loop as a whi | eloop, why introduce the
f or loop at all? Sometimes, a programming idea fits more naturally into the
pattern of a f or statement. If the f or loop makes the code more readable,
why not use it? As you write more and more code, you'll develop a sense of
when to use the whi | eand when to use the f or.

Here’s an example of a f or loop:

int i;

for (i =1; i < 3; i++)
Systemout.println("Looping: " + i);

Systemout.println("W are past the for |oop");
137

CONTROLLING YOUR PROGRAM'S FLOW

138

This example is identical in functionality to the whi | eloops presented earlier.
Note the three expressions on the first line of the f or loop. Before the loop is
entered, the first expression is evaluated:

Once the expression is evaluated, i has a value of 1. We are now ready to enter the
loop. At the top of each pass through the loop, the second expression is evaluated:

i <3

If the expression evaluates to true, the loop continues. Since i is less than 3, we
can proceed. Next, the statement is executed:

Systemout. println("Looping: " + i);
Here's the first line of output:
Looping: 1
Having reached the bottom of the loop, the f or evaluates its third expression:
i ++

This changes the value of i to 2. Back to the top of the loop we go to evaluate the
termination expression:

i <3

Since i is still less than 3, the loop continues. Once again, the Sys-
tem out. pri nt| n(Yoes its thing. The Java Output window looks like this:

Looping: 1
Loopi ng: 2

Next, the f or evaluates the third expression:
i ++

The value of i is incremented to 3. Back to the top of the loop we go again to eval-
uate the termination expression:

THE FOR STATEMENT
i <3

Lo and behold! Sincei is no longer less than 3, the loop ends, and the second Sys-
tem out. printl n()n our example is executed:

Systemout.println("W are past the for |oop");

As was the case with whi | ¢ f or can take full advantage of a pair of curly
braces:

for (i =0; i < 10; i++) {
doThi s();
doThat () ;
danceALittledig();

In addition, both whi | eand f or can take advantage of the loneliest statement,
the lone semicolon:

for (i = 0; i < 1000; i++)

1

This example does nothing 1000 times but does take some time to execute. The
initialization expression is evaluated once, and the modification and termination
expressions are each evaluated 1000 times. Here’s a whi | eversion of the loneliest
loop:

i = 0;

while (i++ < 1000)

LoopTester.u

Interestingly, there is an important difference between the f or and whi | e loops
you just saw. Take a minute to look back and try to predict the value of i the first
time through each loop and after each loop terminates. Were the results the same
for the whi | eand f or loops? Hmmm.... You might want to take another look.
Here’s a sample program that should clarify the difference between these two
loops. Look in the subfolder 08. 02- | oop t est erin the Learn Java Projects folder.
Compile the project by using the Make command, and then run the applet by drop-

139

CONTROLLING YOUR PROGRAM'S FLOW

140

ping the file LoopTest er. ht m onto the Metrowerks Java icon. The Java Output
window will display output from a variety of loops, as shown in Figure 8.2.

Open the file LoopTest er. j avao view the source code for this applet. The
LoopTester applet starts off in i ni t () by defining a counter variable, i . It then
setsi to 0 and enters a whi | eloop:

while (i++ < 4)
Systemout.println("while: i=" +1i);

The loop executes four times, resulting in this output:

while: i=1
while: i=2
while: i=3
while: i=4

Do you see why? If not, go through the loop yourself, calculating the value for
i each time through the loop. Remember, since we are using postfix notation
(i +4), i gets incremented after the test is made to see whether it is less than 4. The
test and the increment happen at the top of the loop, before the loop is entered.

=fi=—— Java Output =——-=015]
while: i=1 1
while: i=2
while: i=3
while: i=4

After while loop, i=5

first for: i=0
first for: i=1
first for: i=2
first for: i=3
After first for loop, i=4

second for: i=1
second for: i=2
second for: =3
zecond for: i=4

After second for loop, i=5

l =

Figure 8.2 The output from LoopTest er . 4, showing the output from three different
loops.

THE FOR STATEMENT
Once the loop completes, we print the value of i again:
Systemout.printin("After while loop, i=" +1i);
Here’'s the result:
After while loop, i=5
Here’s how we got that value. The last time through the loop (with i equal to
4), we go back to the top of the whi | eloop, test to see whether i is less than 4 (it
no longer is), and then do the increment of i , bumping it from 4 to 5.
OK, one loop down, two to go. This next loop looks as if it should accomplish
the same thing. The difference is that we don’t do the increment of i until the bot-

tom of the loop, until we’ve been through the loop once already:

for (i =0; i < 4; i++)
Systemout.printin("first for: i=" +1i);

As you can see by the output, i ranges from 0 to 3 instead of from 1 to 4:

first for: i=0
first for: i=1
first for: i=2
first for: i=3

After we drop out of the f or loop, we once again print the value of i :
Systemout.printin("After first for loop, i=" +i);
Here’'s the result:
After first for |oop, i=4

As you can see, the whi | eloop ranged i from 1 to 4, leaving i with a value of
5 at the end of the loop. The f or loop ranged i from 0 to 3, leaving i with a value
of 4 at the end of the loop. So how do we fix the f or loop so that it works the same

way as the whi | eloop? Take a look at our third loop example:

for (i =1; i <= 4; i++)
Systemout.println("second for: i=" +i);

141

CONTROLLING YOUR PROGRAM'S FLOW

142

This f or loop starts i at 1 instead of 0, and it tests to see whether i is less than
or equal to 4 instead of just less than 4. We could also have used the terminating ex-
pressioni < 5instead. Either one will work. Here’s the output from this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, we print the value of i at the end of the loop:
Systemout.println("After second for loop, i=" +i);
Here's the last piece of output:

After second for loop, i =5

This second f or loop is the functional equivalent of the whi | e loop. Take
some time to play with this code. You might try to modify the whi | e loop to
match the first f or loop.

The whi | e and f or statements are by far the most common types of Java
loops. For completeness, however, we’ll cover the remaining loop, a little-used
gem called the do statement.

The do Statement

The do statement is a whi | estatement that evaluates its expression at the bottom
of its loop instead of at the top. Here’s the pattern a do statement must match:

do
st at ement
whil e (expression);

Here’s an example:
i = 1;

do {
Systemout.printlin(i);
i ++;

} while (i < 3);

Systemout.println("W are past the do | oop");

THE SWITCH STATEMENT

The first time through the loop, i has a value of 1. System out . printl n()
prints a 1 in the Java Output window, and then the value of i is bumped to 2. It’s
not until this point that the expression i < 3is evaluated. Since 2 is less than 3, a
second pass through the loop occurs.

During this second pass, Syst em out . pri nt| n(prints 2 in the Java Out-
put window, and then the value of i is bumped to 3. Once again, the expression
i < 3is evaluated. Since 3 is not less than 3, we drop out of the loop to the
second System out. println()

The important thing to remember about do loops is this: Since the expression
is not evaluated until the bottom of the loop, the body of the loop (the statement)
is always executed at least once. Since f or and whi | eloops both check their ex-
pressions at the top of the loop, it’s possible for either to drop out of the loop be-
fore the body of the loop is executed.

Let’'s move on to a completely different type of statement, known as the
sw tch

The switch Statement

The swi t chstatement uses the value of an expression to determine which of a se-
ries of statements to execute. Here’s an example that should make this concept a
little clearer:

switch (theYear) {

case 1066:
Systemout.printin("Battle of Hastings");
br eak;

case 1492:
System out . println("Col unbus sailed the ocean blue");
br eak;

case 1776:
Systemout. println("Declaration of |ndependence");
Systemout.printIn("A very inportant docunent!");
br eak;

defaul t:
Systemout.println("Don’t know what happened this year");

The swi t chis constructed of a series of case statements, each based on a spe-
cific value of t heYear. If t heYear has a value of 1066, execution continues with
the statement following that cas€'s colon—in this example, the line

Systemout.printin("Battle of Hastings");

143

CONTROLLING YOUR PROGRAM'S FLOW

144

Detail

Execution continues, line after line, until either the bottom of the swi t ch(the
right curly brace) or a br eak statement is reached. In this sample code, the next
line is a br eak statement.

The br eak statement comes in handy when you are working with swi t ch
statements and loops. The br eak tells the computer to jump immediately to the
next statement after the end of a loop or swi t ch

Continuing with the example, if t heYear has a value of 1492, the swi tch
jumps to the lines

System out. println("Col unbus sailed the ocean blue");
br eak;

A value of 1776 jumps to the lines

Systemout. println("Decl aration of |ndependence");
Systemout.println("A very inportant docunent!");
br eak;

Notice that this casehas two statements before the br eak There is no limit to
the number of statements a case can have: One is OK; 653 is OK. You can even
have a case with no statements at all.

This example also contains a def aul t. If the swi t chcan’t find a case that
matches the value of its expression, the swi t chlooks for a def aul t. If the def aul t
is present, its statements are executed. If no def aul t is present, the swi t chcom-
pletes without executing any of its statements.

Here’s the pattern for the swi t chstatement:

switch (expression) {
case const ant:
statenents
case const ant:
statenents
defaul t:
statenents

Why would you want a case with no statements? Here’s an example:

THE SWITCH STATEMENT

switch (myVar) {
case 1:
case 2:
doSonet hi ng() ;
br eak;
case 3:
doSoret hi ngEl se() ;

In this example, if myVar has a value of 1 or 2, the method doSone-
t hi ng() is invoked. If nyVar has a value of 3, the method doSonet hi ng-
El se() is invoked. If myVar has any other value, nothing happens. Use a
case with no statements when you want two different cases to execute the
same statements.

Think about what happens with this example:

switch (nmyVar) {
case 1:
doSonet i mes() ;
case 2:
doFrequent | y();
defaul t:
doAl ways() ;

If myVar is 1, all three functions get called. If nyVar is 2, doFr equent | y()
and doAl ways() get called. If nyVar has any other value, doAl ways() gets
called all by itself. This is a good example of a swi t chwithout br eaks.

At the heart of each swi t chis its test expression. Most swi t ctes are based on
single variables, but assignments and other types of expressions make perfectly
acceptable test expressions.

Each caseis based on a constant. Numbers (such as 47 or —12,932) are valid
constants. Variables, such as nyVar, are not. As you'll see later, single characters
(such as' a' or' $') are also valid constants. However, runs of characters (such as
" Qummy- bear), called strings, are not.

If your swi t chuses a def aul t , make sure that you use it as shown in the pat-
tern described. Don’t include the keyword casebefore the keyword def aul t.

145

CONTROLLING YOUR PROGRAM'S FLOW

146

Detail

break Statements in Loops

The br eak statement has other uses besides the swi t chstatement. Here’s an ex-
ample of a br eakused in a whi | eloop:

i = 1;
while (i <=9) {

pl ayAnl nning(i);

if (itlsRaining())
br eak;

i ++;

l

This example tries to play nine innings of baseball. As long as the method
i t1sRai ni ng()returns with a value of f al sg the game continues uninterrupted.
If i t 1 sRai ni ng()returns a value of t r ug the br eak statement is executed, and
the program drops out of the loop, interrupting the game.

The br eak statement allows you to construct loops that depend on multiple
factors. The termination of the loop depends on the value of the expression found
at the top of the loop, as well as on any outside factors that might trigger an unex-
pected br eak

The most common way to use the br eak statement is in halting loops, and
this is how you’ll use it most often. Here’s an example

int i =0;
while (i < 10) {
if (haltLoop())
br eak;
Systemout.println("i =" +i);
i ++;

Systemout.println("W' re out of the |oop");

If hal t Loop()ever returns t r ug, the br eak statement will execute, and the
message “We're out of the loop” will be the next message to appear in the
Java Output window.

BREAK STATEMENTS IN LOOPS

147

CONTROLLING YOUR PROGRAM'S FLOW

148

int j = 0;
while (j < 10) {
if (haltLoop())
break i Loop;

Notice this time we gave the outer loop the label i Loop and the br eak
statement referenced this name. While the default behavior for the br eak
statement is to break out of the immediate loop in which it is embedded, in
this example, the br eak statement would break out of the loop that was
named, which happened to be the outer loop. If hal t Loop() ever returns
true in this example, we would fall out of both the j loop and the i loop
right away and would move on with the rest of the code.

For more information and examples, check out Java Essentials for C and
C++ Programmers, Barry Boone’s book published by Addison-Wesley, which
describes a variety of sample programs that use br eak statements to control
the flow through a program.

Sample Programs

IsOdd.u

This program combines f or and i f statements to tell you whether the numbers 1
through 20 are odd or even and whether they are an even multiple of 3. The pro-
gram also introduces a brand-new operator: the %operator. Go into the Learn Java
Projects folder and then into the 08. 03 - i s odd subfolder. Open the project
| sQdd. u

Compile and run | sQdd. pby selecting Make from the Project menu and drop-
ping the HTML file | sQdd. ht m onto the Metrowerks Java icon. You should see
something like the Java Output window shown in Figure 8.3.

You should see a line for each number from 1 through 20. Each of the num-
bers will be described as either odd or even. Each of the multiples of 3 will have
additional text describing them as such. Here’s how the program works.

=8 Java Output

The number 1 i= odd

The number 2 iz even

The rumber 2 i= odd and i= a multiple of 2
The number 4 iz even

The number 5 i= odd

The number 6 is even and is a multiple of 3
The number 7 i=s odd

The number 2 iz even

The rumber 9 i= odd and i= a multiple of 32
The number 10 iz even

The number 11 i= odd

The number 12 i= ewven and i= g multiple of 3
The rumber 12 i=s odd

The number 14 iz even

The rnumber 15 is odd and i= a multiple aof 3
The number 16 iz even

The number 17 i= odd

The number 18 i= ewven and iz a multiple of 3
The rumber 19 i= odd

The number 20 iz even

=l

SAMPLE PROGRAMS

Figure 8.3 Running | sQdd. p.

Stepping Through the Source Code

This program starts off with the usual class definition for an applet. This class,
IsOdd, defines ani ni t () method to try out some of the flow control keywords we
learned in this chapter. i ni t () begins by declaring a counter variable named i :

public class IsQdd extends java. appl et. Appl et {
public void init() {
int i;

Our goal here is to step through each of the numbers from 1 to 20. For each
number, we want to check to see whether the number is odd or even. We also
want to check whether the number is evenly divisible by 3. Once we’ve analyzed
a number, we’ll use Syst em out . pri ntl n(Jo display a description of the num-
ber in the Java Output window.

As you might expect, the next step is to set up a f or loop, using i as a counter
initialized to 1. The loop will keep running as long as the value of i is less than or
equal to 20. This is the same as saying that the loop will exit as soon as the value

149

CONTROLLING YOUR PROGRAM'S FLOW

150

of i is found to be greater than 20. Every time the loop reaches the bottom, the
third expression, i ++, will be evaluated, incrementing the value of i by 1. This is a
classic f or loop:

for (i =1; i <= 20; i++) {

Now we're inside the f or loop. Our goal is to display a single line for each
number—that is, one line each time through the f or loop. If you check back to
Figure 8.3, you'll notice that each line starts with the phrase

The nunberx is

In this phrase, x is the number being described. That’s the purpose of using
System out . print () rather than Systemout.println() With the Sys-
tem out . pri nt ()version, rather than System out. pri nt| n()the output does
not skip to the next line after it is displayed in the Java Output window, this
means we can keep on displaying text to the Java Output window, and it will be
placed on the same line as before:

Systemout.print("The nunber " + i + " is ");

Notice that this Syst em out . pri nt (statement was not part of an i f state-
ment. We want this System out. print ()to display its message every time
through the loop. The next sequence of Syst em out . pri nt (ptatements is a dif-
ferent story altogether.

The next chunk of code determines whether i is even or odd and then uses
System out . pri nt ()to display the appropriate word in the Java Output win-
dow. Because the last message was written using Syst em out . pri nt ()rather
than Syst em out . pri nt | n(,)the word “even” or “odd” will appear in the win-
dow on the same line as and immediately following

The nunberx is

The next chunk of code introduces the operator % which is a binary operator
that returns the remainder when the left operand is divided by the right operand.
For example,i % 2divides 2 intoi and returns the remainder. Ifi is even, this re-
mainder will be 0; if i is odd, this remainder will be 1:

if ((i %2) ==0)

System out. print("even");
el se

System out. print("odd");

SAMPLE PROGRAMS

In the expressioni % 3 the remainder will be 0 if i is evenly divisible by 3;
otherwise, i will either be 1 or 2:

if ((i %3) ==0)
Systemout.print(" and is a nmultiple of 3");

If i is evenly divisible by 3, we’ll add the following phrase to the end of the
current line:

and is a nultiple of 3

Finally, we display a blank and prepare for the next number in the loop by
making the display start at the next line:

Systemout.println("");

}
}
}
The loop ends with a right curly brace.
NextPrime.p

In our next program, we focus on the mathematical concept of prime numbers. A
prime number is any number whose only factors are 1 and itself. For example, 6 is
not a prime number because its factors are 1, 2, 3, and 6. The number 5 is prime
because its factors are limited to 1 and 5. The number 12 isn’t prime because its
factorsare 1, 2, 3,4, 6, and 12.

The next program finds the next prime number greater than a specified num-
ber. For example, if we set our starting point to 14, the program will find the next
prime, 17. We have the program set up to check for the next prime after 19. Know
what that is?

Go into the Learn Java Projects folder and then into the 08. 04- next prime
subfolder. Open the project Next Pri me. pCompile Next Pri me. j avéy selecting
Make from the Project menu, and then run the applet by dropping Next Pri ne. ht ni
onto the Metrowerks Java icon. You should see something like the Java Output
window shown in Figure 8.4.

As you can see, buried at the end of the verbose messages in the Java Output
window is the line “The next prime after 19 is 23.” Here’s how the program
works.

151

CONTROLLING YOUR PROGRAM'S FLOW

152

SiI=——————"—— Java Output = J|=
Executing: jawai sun.applet.Appletliewer
/B lueHor=se LearnB20Javaf20Proj ec tsB20KR /08 04820-F20nex tB20pr ime MextPrime himl [

The next prime after 19 is 23
Comp | eted{d:}

]
] <]

=l

Figure 8.4 Running Next Pri ne. p.

Stepping Through the Source Code

As with the other recent applets, this applet defines an i ni t () method to perform
our test of the language:

public class NextPrine extends java.appl et. Applet {
public void init() {

We're going to need a boatload of variables. The first four are defined as i nts.
The fifth, i sPri ne is a Boolean that is used to keep track of whether we’ve found
a prime or not:

i nt startingPoint, candidate, last, i;
bool ean i sPri ne;

We'll start at 19:

startingPoint = 19;

You can set st arti ngPoi ntto whatever you’d like to and recompile and rerun
this program to find other primes. The variable candi dat ewill hold the current
candidate we are considering. Is candi dat ethe lowest prime number greater than
starti ngPoi n? By the time we are done, it will be!

Since 2 is the lowest prime number, if st art i ngPoi ntis less than 2, we know
that the next prime is 2. By setting candi dat eto 2, our work is done:

if (startingPoint < 2) {
candi date = 2;

SAMPLE PROGRAMS

If st arti ngPoi ntis 2, the next prime is 3, and we’ll set candi dat eaccord-
ingly:

else if (startingPoint == 2) {
candi date = 3;

If we got this far, we know that st ar t i ngPoi ntis greater than 2. Since 2 is the
only even prime number and since we’'ve already checked for starti ngPoi nt
being equal to 2, we can now limit our search to odd numbers only. We'll start
candi dat eat st art i ngPoi ntand then make sure that candi dat eis odd. If it isn’t,
we’ll decrement candi dat e Why decrement instead of increment? If you peek
ahead a few lines, you'll see that we’re about to enter a do loop and that we bump
candi dat eto the next odd number at the top of the loop. By decrementing candi -
dat e now, we're preparing for the bump at the top of the loop, which will take
candi dat eto the next odd number greater than st ar t i ngPoi nt

el se {

candi date = startingPoint;
if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- -;

This loop will continue stepping through consecutive odd numbers until we
find a prime number. We'll start i sPri neoff as t r ue and then check the current
candi dat eto see whether we can find a factor. If we do find a factor, we’ll set
i sPrimeto f al se forcing us to repeat the loop:

do {

isPrime = true; // Assune gl orious success
candi date += 2; // Bunp to the next nunber to test

Now we'll check to see whether candi dat eis prime. This means verifying
that candi dat ehas no factors other than 1 and candi dat e To do this, we’ll check
the numbers from 3 to the square root of candi dat eto see whether any of them di-
vides evenly into candi dat elf not, we know we’ve got ourselves a prime!

The way we find the square root of a number in Java is to use a class method
defined by the Math class (the Math class is supplied by Java, which you’ll learn
more about in Chapter 10). This method actually returns a floating-point number

153

CONTROLLING YOUR PROGRAM'S FLOW

By the Way

154

(naturally enough, since the square root of any given number may not be an inte-
ger). However, we only want an integer since we are finding the last number to
check for a factor. What we want is to truncate the floating-point number, drop-
ping any fractional portion, and simply use the integer portion.

The way we achieve this in Java is by casting. We want to change the floating-
point value to an integer. We can do this by writing (i nt) in front of the expres-
sion for the floating-point number (you'll learn much more about floating-point
numbers and casting in Chapter 12):

last = (int)Math.sqrt(candidate);

So why don’t we check from 2 up to candi date - 2 Why start with 3?
Since candi dat ewill never be even, we know that 2 will never be a factor.
For the same reason, we know that no even number will ever be a factor.

Why stop at the square root of candi dat & Good question! To help un-
derstand this approach, consider the factors of 12, other than 1 and 12. They
are 2, 3, 4, and 6. The square root of 12 is approximately 3.46. Notice how
this fits nicely in the middle of the list of factors. Each of the factors less than
the square root will have a matching factor greater than the square root. In
this case, 2 matches with 6 (2 * 6 = 12) and 3 matches with 4 (3 * 4 = 12). This
will always be true. If we don’t find a factor by the time we hit the square
root, there won't be a factor, and the candidate is prime.

Take a look at the top of thef or loop. We starti at 3. Each time we hit the top
of the loop (including the first time through the loop), we’ll check to make sure
that we haven’t passed the square root of candi dat eand that i sPri meis still
true If i sPrineis fal se we can stop searching for a factor since we’ve just
found one! Finally, each time we complete the loop, we bump i to the next odd
number:

/* Loop through odd nunbers only */
for (i =3; (i <=last) & isPrime; i += 2) {

Each time through the loop, we’ll check to see whether i divides evenly into
candi dat eIf so, we know that it is a factor, and we can seti sPri netof al se

if ((candidate %i) == 0)
isPrime = fal se;

WHAT'S NEXT?

} while (lisPrime);

Once we drop out of the do loop, we use a Syst em out . pri nt | n(jtatement
to display both the starting point and the first prime number greater than the
starting point:

Systemout.println("The next prine after " + startingPoint + " is
+ candi date);

If you are interested in prime numbers, play around with this program. See
whether you can modify the code to display all the prime numbers from 1 to 100.
How about the first 100 prime numbers?

Review

This chapter covered many of the details of implementing your methods. You've
learned how to branch based on certain conditions, how to execute one set of
statements instead of others, and how to loop through your code. Mastering the
information in this chapter involves learning many new Java keywords and new
ways of thinking about problems.

The comparative operators covered here that you'll use most often include <,
> == and ! = (As you learned, these are the less than, greater than, equal to, and
not equal to operators, respectively.) You now know you can use these operators
in conjunction with keywords to control the flow through your program. The key-
words you learned in this chapter include i f, el se f or, whi | € do, swi t ch case
and br eak Take the time to make sure you understand how each of these works.
If you would like some more examples, check out the appendixes for more refer-
ences and example code.

What's Next?

You've covered many of the important aspects of creating a method (storing data
in variables, branching, looping, and working with operators). In Chapter 9, we’ll
take all this to the next level by creating objects from our classes. You'll see all
your effort to learn about variables and methods pay off with objects. You’ll create
objects to implement the different parts of your application. You'll define vari-
ables for your objects and give your objects specific values that make each object
unique, and you’'ll give your objects behavior using methods.

155

Chapter 9

Objects

So far, the applets in this book did not need to create their own objects. We're
about to change all that. Starting with this chapter, we’ll create objects based on
our classes and use these objects in our applets.

Even though you haven’t created any objects yourself, you have been work-
ing with objects all along. In particular, as you have learned, the browser makes
an instance of your Applet class when it runs your applet. We'll also explore
methods and variables in much more depth here by learning how to make meth-
ods and variables part of your objects.

The Purpose of Objects

Let’s review what the purpose of an object is before diving into the details of an
object. Objects represent the different parts of your application. You create new
objects based on classes. By defining classes and creating objects, you can write
programs that reflect the “real world” and model the problem at hand.

For example, remember our payroll program discussion from Chapter 4? You
might create objects to represent the employees in your program. Each employee
object might keep track of three pieces of information: an employee number, the
employee’s hourly wage, and the number of hours the employee has worked so
far this month. You would create an Employee class that defined what each em-
ployee object looked like. This is depicted in Figure 9.1.

In your program, you could create a specific instance, or object, based on this
Employee class to hold the particular values for a given employee. For example, if

.
Employee class

| |
| employee number |
hourly wage |

hours worked
Lo—- - - — -

Figure 9.1 A schematic of a class called Employee.

157

OBJECTS

158

create objects
to maintain
————— the data for .

|r Employee class j| individual employee object
employees employee number = 1

| employee number | | ooy wige — 420

| hourly wage | hours worked = 40

L hours worked |

employee object

employee number = 2
hourly wage = $18
hours worked = 100

Figure 9.2 A schematic of two specific instances, or objects, created from the Employee
class.

your company had two employees, employee number 1 might have an hourly
wage of $20 and might have worked 40 hours so far this month. Employee num-
ber 2 might have an hourly wage of $18 and might have worked 100 hours so far
this month. This is depicted in Figure 9.2.

Figure 9.2 shows that the Employee class specifies the data that each em-
ployee object will have, but it does not provide any values. Instead, the individual
employee objects maintain the values that make each employee unique. As your
company grows, you can create new employee objects from the Employee class,
using the Employee class like a template or a cookie cutter, as we covered in
Chapter 4. Once you create a new employee object, you can fill in the values that
make that employee unique. For example, a new employee just joining the com-
pany would need an object dedicated to the new employee. This would be the
third employee object we created so far. This new object would maintain its own
unique values, such as employee number 3, an hourly wage of $10, and 0 hours
worked this month.

One of the great things about classes is that, in addition to specifying the data
that objects will hold, they also specify the behavior that objects will have. Often,
an object’s behavior involves manipulating an object’s data in some way, perhaps
by performing a calculation. For example, we could create a method that allowed
employee objects to calculate the employee’s income for the month. In the Java
program, this new method would be defined in the class definition. Remember,
from Chapter 4, that objects look to their classes to see what behavior they are ca-
pable of. Our new method might be called ear nedl ncome() This method might
multiply the number of hours worked by the employee’s hourly wage to arrive at
the earned income for a given employee for that month.

THE PURPOSE OF OBJECTS

employee object

employee number = 1 ~<&———— ear nedl ncone()
hourly wage=$20 ——® $800
hours worked = 40

employee object
—— ear nedl ncone()

employee number = 2 $1800

hourly wage = $18
hours worked = 100

Figure 9.3 A schematic of employee objects responding to a method invocation.

Now, if we invoked employee number 1’s ear nedl nconme()method, ear ned-
I ncone() would access the data for employee number 1. It would find that its
hourly wage was equal to 20 and that its hours worked so far this month was
equal to 40. Then, ear nedl ncone()would perform the multiplication and return
a value of 800. If we invoked employee number 2’s ear nedl ncone()method,
ear nedl ncome()would access the instance variables for employee number 2. It
would find that its hourly wage was equal to 18 and that its hours worked so far
this month was equal to 100. In this case, ear nedl ncome()would perform the
multiplication using employee 2’s own unique data and return a value of 1800.
This is depicted in Figure 9.3.

The purpose of objects, then, is to allow you to design and implement your
programs in a way that models the real world as much as possible. Here, for ex-
ample, employees maintain their own data and can determine how much they
should be paid each month. Your applets will become a collection of objects that
store data and know how to behave. What’s more, your objects will sometimes
create other objects and interact with them to get the job done. For example, an
applet that acted as a payroll program would create employee objects and interact
with them to keep track of the employees in the company. As another example,
the SimpleDraw program you saw earlier is an applet that creates circle and
square objects.

Since you'll often need to create new objects when writing your own applets,
it’s high time you learned how to create new objects based on your classes. Let’s
turn to this topic next.

159

OBJECTS

Definition

160

How to Create Objects

To create a new object from a class, you use a command called new Here’s an ex-
ample. Let’s say you have an empty class, called Circle, defined like this:

class Circle {

}

To create an instance of this class, you could write a line of code like this:
new Circle();

This statement returns a new object. This might remind you a little bit of a method
invocation, except for the keyword newpreceding G r cl e(). Typically, you would
assign this new object to a variable.

To declare a variable that can hold an object of a particular type, you use the
class name as the data type of the variable. For example, to declare a variable
called nyGi r cl ethat will hold an object that is an instance of class Ci r cl € you
would write

Circle myGrcle;

Then, when you create the new object, you would assign it to the variable
myCi r cl e like this:

myCircle = new Circle();

You could also declare the variable, create the object, and assign the new ob-
ject to the new variable all in one line, like this:

Circle myGircle = new Circle();

What you are doing with the code new GCi rcl e()is invoking a class’s con-
structor. A constructor is a special method that initializes an object. Java pro-
vides a default constructor for your classes, so you don’t have to define one
yourself to create objects based on your classes. However, you can if you
want to, and Chapter 13 explains how you would go about doing this. Cre-
ating your own constructor allows you to initialize an object when it is first
created.

DEFINING INSTANCE VARIABLES

Just as some methods take parameters, some constructors take parameters,
too. Sometimes, you’ll pass parameters to a constructor to initialize the object
when you create it. For example, Java supplies a type of class called a String. A
string object maintains some text, such as “Goodbye Yellow Brick Road” or “This
is Green leader, over.” You can create a new string instance like this:

String s = new String();

This statement declares a variable named s that will hold a string object. It then
creates a new string object using the newcommand and invokes the String class’s
default constructor. The resulting object is assigned to s.

This creates a perfectly good string, except for one thing: This string
wouldn’t contain any text. Yet, that’s the whole point of strings! Instead of creat-
ing a string without any text, you almost always will want to supply this text to
the string’s constructor. You supply this data as a parameter to the constructor,
just as you supply parameters to methods. You would supply the text for the
string when you create the string like this:

String s = new String("Wat | Did on ny Summer Vacation");

As you can see, you just place the constructor’s parameter between the parenthe-
ses following the constructor invocation. As with methods, if there’s more than
one parameter, you separate the parameters using commas.

Now that you know how to create new objects, let’s look at how to use them
in your applets.

Defining Instance Variables

As you learned in the previous three chapters, variables allow you to keep track
of the data used in your methods. For example, to define a method that finds the
perimeter of a triangle, you could write

int findPerinmeter() {
int sidel 5;
int side2 12;
int side3 = 13;

return (sidel + side2 + side3);

161

OBJECTS

162

This method defines three variables. The variables si del, si de2 and si de3
hold the length of each side of a specific triangle. This method returns the length
of the triangle’s perimeter. This example shows how variables can be used inside
a method to store data, as you've seen already.

To store data inside an object, you can do the same kind of thing. That is, like
methods, objects can define variables to keep track of their own data.

Here’s an example of a Triangle class that defines three variables for its
instances:

class Triangle {
int sidel;
int sideZ2;
int side3;

When you create an instance of this class, you set aside enough memory to
store the three i nt values named si del, si de2 and si de3that are listed in the
class definition. Figure 9.4 shows how a triangle object based on the Triangle class
is created.

At first, the three instance variables will have the value 0. (This is the default
value fori nt variables.) However, you can access these variables, assign values to
them, and retrieve their values whenever you want to. This lets you create a tri-
angle object, for example, and then immediately assign values to it, such as si del
= 3 side2 = 4and side3 = 5The next section shows you how. We'll cover
how to access instance variables by also discussing instance methods.

Defining Instance Methods

We wrote methods in the preceding two chapters for an applet. These methods
started out as the applet life cycle methods i nit(), start() stop() and de-
st roy(). We also showed how i ni t () could invoke a method we wrote ourselves
called set UpGUI ()and how to define our own method called f i ndAver age(that

- — — — — — - Createanew instance] -
class Triangle _ — instance of class Triangle
L — — — 4 new Triangle(); .
sidel =0
side2=0
side3=0

Figure 9.4 Making an instance of class Triangle.

DEFINING INSTANCE METHODS

took parameters and returned a value. Just as we defined new methods for the
applet, we can define new methods for any other class as well.

Let’s build on the triangle example we started in the last section. You've al-
ready seen that for a method to access variables that it defines, all it has to do is
refer to the variables by name. For example, recall the f i ndPeri net er () method
given earlier that looked like this:

int findPerimeter() {
int sidel 5;
int side2 12;
int side3 = 13;

return (sidel + side2 + side3);

This method simply referred to si del, si de2 and si de3to get at the values
they defined. Is there a big difference between methods accessing their own vari-
ables and objects accessing their own variables? Not at all! For a triangle object to
access its own instance variables, all it has to do is, like the method, refer to the
variables by name. For example, if triangle objects defined a method named
findPerimeter()thenfindPeri neter ()ould look like this:

class Triangle {
int sidel;
int side2;
int side3;

int findPerinmeter() {
return (sidel + side2 + side3);

As you can see, the method fi ndPeri net er ()is able to access the instance
variables in the same object in which it is defined. This is important! The key
point here is that f i ndPer i met er (Jaccesses the instance variables for its particu-
lar object. If you created two triangle objects and assigned each object its own
data, invoking that object’s f i ndPer i net er ()method would yield the results ap-
propriate for that object.

For example, if you created a triangle object and gave its sides the values 6, 8,
and 10, then invoking f i ndPer i met er ()for that triangle would return the value
24.If you created another triangle object and gave its sides the values 4, 4, and 4,
then invoking f i ndPer i met er (Yfor that triangle would return the value 12.

163

OBJECTS

164

Using Instance Variables and Methods
in Other Objects

You now know how to access instance variables and invoke behavior—as long as
you only ever have one object! For example, what we’ve shown so far works just
fine for a program consisting solely of an Applet class. We can define instance
variables for our applet and define new methods. These new methods can access
the instance variables to set or retrieve their values, just as our methods did when
the variables were defined in the methods themselves.

The true power of instance variables and instance methods is when we can
work with a whole bunch of objects at once. For example, a Trigonometry applet
might build up a library of triangles. It would be great to have our applet refer to
these different triangles, access different triangles” data, and invoke different tri-
angles’ methods. We can’t just refer to a triangle object’s variables or methods by
name alone from our own applet because, first of all, the computer wouldn't
know we wanted the triangle’s variables and methods rather than our applet’s
and, second of all, the computer wouldn’t know which triangle object we were re-
ferring to! If we are going to create a whole bunch of separate objects, we need a
way of distinguishing triangle 1’s variables from triangle 2’s variables and trian-
gle 1’s methods from triangle 2’s methods. In other words, if we want to ask trian-
gle 1 for its perimeter, we want to make sure that fi ndPeri met er ()uses the
values for triangle 1 and not some other triangle.

Java provides a way to do this. Java uses a dot (.) to associate a variable or a
method with a given object. The best way to illustrate this is with an example.

Let’s write an applet called Trig that, in its i ni t () method, creates two trian-
gles, assigns values to them, and then finds the perimeter for each triangle. Here’s
the definition for the Triangle class:

class Triangle {
int sidel;
int sideZ2;
int side3;

int findPerinmeter() {
return sidel + side2 + sideg3;

Now, let’s create objects out of this class and use them in our applet’si ni t ()
method. Here’s the top part of this method, which creates two triangle objects:

DEFINING INSTANCE METHODS

public class Trig extends java. applet. Applet {
init() {
Triangle t1;
Triangle t2;

tl
t2

new Triangl e();
new Triangl e();

Next, we would like to set the values for t 1’s instance variables. We associate
an instance variable to a particular object by using a dot, like this:

tl.sidel = 3;
tl.side2 = 4;
tl.side3 = 5;

Now, t 1's instance variables are set to 3, 4, and 5. Similarly, to assign values to
t 2’s instance variables, we can write

t2.sidel = 5;
t2.side2 = 10;
t2.side3 = 10;

At this point, the triangle referenced by t 2 holds the values 5, 10, and 10 for
its sides. Each instance’s variable names are the same (si del, si de2 and si de3),
but we refer to a different object when we use the dot notation. Now, t 2 contains
different values in its instance variables than t 1. If we wanted to access t 1’s in-
stance variable named si del, we could refer to it by writing t 1. si del If we
wanted to refer to t 2's instance variable named si de3 we could refer to it by
writing t 2. si de3

For the last part of our Trig applet, we need to find the perimeter for each tri-
angle by invoking each triangle’s f i ndPer i net er ()method. From the preceding
discussion on accessing instance variables in other objects, you can probably al-
ready guess how to invoke methods in other objects: Just connect the object with
the method invocation by a dot. Here’s the remainder of the code:

int resultl
int result2

t1.findPerimeter();
t2.findPerimeter();

165

OBJECTS

166

In this example, t 1. fi ndPeri met er ()would return the value 12 (because
t 1's sides are equal to 3, 4, and 5), and t 2. fi ndPeri net er ()would return the
value 25 (since t 2’s sides are equal to 5, 10, and 10). The variable r esul t 1 then,
would be assigned 12, and r esul t 2would be assigned 25.

Referring to Yourself

As you saw, you don’t have to connect an instance variable or an instance method
with an object when you’re accessing it from the same object in which these vari-
ables and methods are defined. For example, you saw how the Triangle class de-
fined an instance method called f i ndPer i net er ()that just referenced its instance
variables directly.

This usually works just fine, but here’s a scenario that would cause the com-
piler to not understand what we wanted. Imagine that we define a method that
initializes the triangle’s sides. Perhaps we have a method definition that begins

void initTriangle(int sidel, int side2, int side3) {

Are these parameter names referring to the same instance variables defined
by the triangle? No. Parameter names are separate from the triangle’s instance
variable names. Does that mean we can write code for our i nit Tri angl e()
method like this

void initTriangle(int sidel, int side2, int side3) {
si del = sidel;
si de2 = side2;
si de3 = side3;

and expect the instance variables to be assigned with the values in the parame-
ters? No again. The compiler will think we’re assigning the parameter back to its
original value. If we write a method like this, the instance variables will never be
assigned the values we pass to i ni t Tri angl e()If we could specify the object, as
we did when referring to variables and methods in other objects, we could indi-
cate that we wanted to assign the parameter si delto the instance variable si del,
the parameter si de2to the instance variable si de2 and the parameter si de3to
the instance variable si de3 In other words, you want to write code that expresses
this idea:

(this objech).sidel si del;
(this objech).side2 si de2;
(this objec).side3 = side3;

SAMPLE PROGRAMS

So how do we refer to our own object? Java provides a way to do this through
the use of a special variable called t hi s. Java defines the variable named t hi s for
every instance method. You can use this variable whenever you want to. Here’s
how we would solve the problem just presented:

void initTriangle(int sidel, int side2, int side3) {
this.sidel = sidel;
this.side2 = side2;
this.side3 = side3;

The variable named t hi s is defined for you by Java. The t hi s variable lets
you clarify which object a variable or method belongs to. t hi s is sometimes de-
scribed as representing the current object. The current object is the one respond-
ing to a method invocation.

For example, in the example code given earlier, we created two triangle ob-
jects. The first was assigned to the variable t 1; the second was assigned to the
variable t 2. If we invoke t1’s fi ndPeri meter () method, then when fi nd-
Per i met er ()is executing, t hi sis equal to the object represented by t 1, and t 1is
said to be the current object, the one responding to the method invocation. Simi-
larly, if we invoke t 2’s f i ndPer i net er ()method, then when f i ndPeri met er ()is
executing, t hi sis equal to the object represented by t 2, and t 2 is said to be the
current object.

Sample Programs

We'll look at a simple program in this section and slowly extend it to illustrate in-
stance variables and instance methods. The code here will all relate to the em-
ployee example we touched on earlier.

Employeel.u

For our first example of instance methods and instance variables, open the sub-
folder 09. 01- enpl oyee 1in the Learn Java Projects folder. Double-click the
project file and compile the applet by selecting Make from the Project menu. Run
the program by dropping the file Enpl oyeel. ht nlonto the Metrowerks Java icon.
When you do, an empty applet will appear and the Java Output window will look
like the one in Figure 9.5.

167

OBJECTS

168

SI="——— Jaraluiput =———— 7=
Executing: jowai sun.applet.Appletl)iswer B
/B lueHor=se Learn820Javaf20Proj ec t=F20KR /09 . 0 1820-820emp | oyeef201 /Emp logee 1 . hitml [
hour Iy wage = 10
hours worked = 20
eqrned income = 200
Comp | eted{d:}

=
Ik

=l

Figure 9.5 Running Enpl oyeel. p

This applet displays some information in the Java Output window for a par-
ticular employee. As you can see, after all the initialization gobbledygook, this
program displays three lines:

hourly wage = 10
hours worked = 20
earned i ncone = 200

Let’s see what's happening with the source code.

Stepping Through the Source Code

Open Enpl oyeel. j avaither by double-clicking this file name in the project win-
dow or by double-clicking the file icon. Once you get it open, you’ll see this file
defines an applet called Employeel. You might notice that the source code for this
applet defines two life cycle methods—i nit () and start()—and one other
method, called ear nedl ncone() This applet also defines two instance variables,
called hour | ywageand hour sWor kedHere’s how it all works.

At the start of the applet, the applet defines two instance variables:

public class Enpl oyeel extends java.applet. Appl et {

i nt hourl yWage;
i nt hour sWr ked;

The applet will use these variables to store and retrieve data. The applet then
defines its first instance method, a custom method called ear nedl ncome() This
method does not take any parameters, but it uses the two instance variables to
perform a calculation:

SAMPLE PROGRAMS

i nt earnedl ncome() {
return hourl yWage * hour sWr ked;

}

Notice how this instance method can just refer to the instance variables by
name. The variables belong to the object (that is, the applet object), so it’s no prob-
lem accessing them from this instance method also defined for the applet object.

Next, the applet provides an i ni t () method. When the applet is first initial-
ized by the Applet Viewer, itsi ni t () method is invoked, and it sets the values of
its instance variables. It sets hour | yWageto 10 and hour s\Wor kedo 20:

public void init() {
hour | yWage = 10;
hour sWworked = 20;
}

Remember, if we don’t set the instance variables, they will have the default
value of 0. Again, in i ni t (), we can just refer to these instance variables directly
since i ni t () is an instance method.

The third method, st ar t (), is invoked by the Applet Viewer afteri ni t (). The
start () method defines a local variable named ear nedl ncone This method
begins by displaying the values of the instance variables hour | yWageand hour s-
VWor ked

public void start() {
i nt earnedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hoursWrked);

As you can tell from the Java Output window, hour | yWageand hour sWr ked
contain the values we set in the i ni t () method. These values will stay with the
object until we change them. Since we assigned these values to an instance vari-
able, they are accessible from any instance method defined for the same object. As
you can see, this is one way to use the same variables in different methods.

The last thing this method does is to invoke the current object’s (that is, this
applet’s) ear nedl ncorme()method. Since we want to invoke the method for this
object, we can do so just by writing

ear nedl ncome = ear nedl ncone();

169

OBJECTS

170

This statement assigns the return value of ear nedl ncome() the method, to
ear nedl ncongthe local variable. The compiler is able to distinguish between the
method name and the variable name.

If we wanted to invoke a method for a different object, we would have had to
prefix the method name with a variable containing the object, followed by a dot.
However, ear nedl ncone()is defined for the same object whose code is currently
executing (that is, the applet), and invoking a method in the same object can be
done without the need for specifying the object.

Invoking ear nedl ncone()executes the method the applet defined at the top
of this listing. ear nedl ncone()accesses the applet’s instance variables hour | y-
Wage (which is 10) and hour sWor kedwhich is 20), performs the multiplication (to
get 200), and returns the result. The result is then displayed in the Java Output
window:

Systemout.println("earned incone = " + earnedl ncone);

Throughout this listing, we used only one object, so it was straightforward to
use instance variables and instance methods. The next example shows how differ-
ent objects can communicate with one another by accessing their instance vari-
ables and instance methods.

Employee2.u

For our second example, open the subfolder 09. 02 - enpl oyee 2n the Learn
Java Projects folder. Open Enpl oyee2. p After making the project, run the pro-
gram, by dropping the file Enpl oyee2. ht ml onto the Metrowerks Java icon.
Again, an empty applet will appear, but this time the Java Output window will
display information for three different employees:

Enpl oyee 1:

hourly wage = 10
hours worked = 20
earned i ncome = 200

Enpl oyee 2:

hourly wage = 18
hours worked = 38
earned incone = 684

SAMPLE PROGRAMS

Enpl oyee 3:

hourly wage = 12
hours worked = 52
earned i ncome = 624

The display indicates that each employee contains its own data. Now we're
beginning to use objects to their full advantage! Let’s step through the source code
and see how we do this.

Stepping Through the Source Code

Open Enpl oyee2. j avaither by double-clicking this file name in the project win-
dow or by double-clicking the file icon. There are two class definitions in this file.
The first, named Employee2, is for the applet. The second, simply called Em-
ployee, is for a class that maintains payroll information for a particular employee.

The top part of this code contains the applet. The applet defines three instance
variables, which it will use to keep track of three different employees:

public class Enpl oyee2 extends java. appl et. Appl et {

Enpl oyee el;
Enpl oyee e2;
Enpl oyee e3;

Unlike in the previous example, this applet does not maintain the specifics of
employee payroll information. Instead, the applet uses the employee objects to
maintain this information. In the i ni t () method, the applet creates three different
employees and assigns each of the employee objects returned by the constructor
to the three instance variables e, e2, and e3. The applet then assigns values to in-
stance variables defined for the employee objects. First, the applet sets the in-
stance variables for the employee object assigned to el; then, the applet sets the
instance variables for the employee object assigned to e2; finally, the applet sets
the instance variables for the employee object assigned to e3:

public void init() {
el = new Enpl oyee();
el. hour | yWage = 10;
el. hour sWwr ked = 20;

e2 = new Enpl oyee();
e2. hour | yWage = 18;
e2. hour sWorked = 38;

171

OBJECTS

172

e3 = new Enpl oyee();

e3. hour| yWage = 12;

e3. hour sWorked = 52;
}

By using the variables el, e2, and e3, the applet can reference the instance
variables for specific employee objects. Notice that the applet is setting the in-
stance variables in an object different from itself!

In the st ar t () method, the applet displays messages indicating it is about to
show the employees’ payroll information. The applet then invokes the instance
method di spl ayl nf o() which is defined for the employee objects. The applet
first invokes this instance method for el, then for e2, and then for e3:

public void start() {
Systemout.println("");
System out. println("Enpl oyee 1:");
el. di splaylnfo();

Systemout.println("");
System out. println("Enpl oyee 2:");
e2.displaylnfo();

Systemout.println("");
System out. println("Enpl oyee 3:");
e3.displaylnfo();

Again, by prefixing el, €2, and e3 to the instance method, the applet can in-
voke an instance method for each employee object.

The Employee class defines two instance variables and two instance methods.
The instance variables are hour | yWageand hour s\Wor ked As you saw earlier in
the listing, the applet object sets these values for each of the three employee ob-
jects it creates:

cl ass Enpl oyee {
i nt hourl yWage,;
i nt hour sWr ked;

SAMPLE PROGRAMS

The first instance method for the Employee class provides the calculation for
earned income. This instance method can simply access the instance variables di-
rectly since the instance variables are defined in the same class as this method:

int earnedl ncone() {
return hourl yWage * hour sWrked;

The di spl ay! nf o()method displays the instance variables hour | yWageand
hour sWor kedand invokes the instance method ear nedl ncone()

voi d displaylnfo() {
i nt earnedl ncone;

Systemout.println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hoursWrked);

ear nedl ncome = ear nedl ncone();
Systemout.println("earned income = " + earnedlncone);

Since each object maintains its own data, invoking di spl ayl nf o()for el
yields output according to the values stored in el. Looking back, you can see that
the applet stored 10 in el’s hour | yWageinstance variable and 20 in e1’s hour s-
Wr kedinstance variable. When the applet invokes el’s di spl ayl nf o()instance
method, el starts by displaying the values of its instance variables (10 and 20).
When el invokes its own instance method ear nedl nconme() ear nedl ncone()
accesses the values of these same instance variables, 10 and 20, and returns 200.
di spl ayl nf o()then displays this result.

The same things occur for e2 and e3. Each object responds to an instance
method by using the values in its own particular instance variables. So, when the
applet invokes €2’s di spl ayl nf o()method, e2’s data is displayed. When the ap-
plet invokes e3’s di spl ay! nf o()method, e3's data is displayed.

Employee3.u

For our third example, open the subfolder 09. 03- enpl oyee3 in the Learn Java
Projects folder. Open Exanpl 3. pand make the project. Run the program by
dropping the file Enpl oyee3. ht nfonto the Metrowerks Java icon. Once more, an

173

OBJECTS

174

empty applet will appear. The Java Output window will look like what you saw
in the previous sample. That is, it will contain employee information that looks
like this:

Enpl oyee 1:

hourly wage = 10
hours worked = 20
earned i ncone = 200

Enpl oyee 2:

hourly wage = 18
hours worked = 38
earned incone = 684

Enpl oyee 3:

hourly wage = 12
hours worked = 52
earned inconme = 624

Let’s turn to the source code and see what's up.

Stepping Through the Source Code

Open Enpl oyee3. j avaither by double-clicking this file name in the project win-
dow or by double-clicking the file icon. The purpose of this code is to show how
t hi scan be used to refer to an object’s own instance variables. The code here is al-
most identical to the previous sample, except in the way the applet initializes the
employees and in the method provided by the Employee class to perform this ini-
tialization.

First, the applet defines its i ni t () method like this:

public void init() {
el = new Enpl oyee();
el.initialize(10, 20);

e2 = new Enpl oyee();
e2.initialize(18, 38);

e3 = new Enpl oyee();
ed.initialize(12, 52);

DEFINING CLASS VARIABLES AND METHODS

The Employee class defines the i ni ti al i ze()instance method to help the
applet set the instance variables in an employee object. Here’s how the em-
ployee’sini ti al i ze()method begins:

void initialize(int hourlyWage, int hoursWrked) {

Since the instance variables are also named hour | yWageand hour s\Wr kegwe
need a way to differentiate between the instance variables and the parameters.
The way we do this is by using the variable named t hi s:

t hi s. hourl yWage = hourl yWage;
t hi s. hour sWwor ked = hour s\Wor ked;
}

Now, the compiler will know which value to assign to which variable. By
using t hi s, we can indicate that the values in the parameters hour | yWageand
hour sWr kedshould be assigned to the current object’s instance variables hour -
| yWageand hour s\Wr kedrespectively.

Defining Class Variables and Methods

As described so far, the purpose of classes is to create objects, just as the purpose
of cookie cutters is to create cookies. However, like cookie cutters, classes also
exist on their own. For example, you saw that classes stamp out objects, as in
Figure 9.6.

While the emphasis of Figure 9.6 is that the Employee class is used to create
objects, the figure also shows that the Employee class exists in its own right. We
can ask an employee object for its data or invoke an employee object’s method;
what happens if we try to do this kind of thing for the class?

el e o ace 7
Employee class .
: | create objects employee object
instance variables tsown unique values
| instance methods |
- — — — i
employee object
its own unique values

Figure 9.6 The Employee class stamping out objects but existing in its own right.

175

OBJECTS

176

r-— - — —— = m
Employee class i
| EMPIOY | create objects employee object
| instance variables its own unique values
| instance methods |
| classvariables |
L cl_a&s _melhoﬂs _ 4 empl oyee object

its own unique values

Figure 9.7 The Employee class defining class variables and class methods in addition
to instance variables and instance methods.

Associating data and behavior with the class might make a lot of sense in cer-
tain situations. For example, what if we wanted to keep track of the number of
employees in the company? That piece of data doesn’t seem to belong to any spe-
cific employee. The number of employees seems to belong to all of the employees
in general. That is, this data seems to belong with the class. For the SimpleDraw
applet, the user could draw all the circles he or she desired, and each circle had its
own unique position and color. However, all circles were the same size. The ra-
dius for the circle was a property of circles in general, not of any particular circle.
This value—the circle’s radius—might be better kept in the Circle class itself in
this case.

As you might expect, associating data and behavior with the class itself is
possible to do in Java. A more complete picture of a class might be to say that
while a class defines instance variables and instance methods, it also can define
class variables and class methods. Figure 9.7 extends Figure 9.6 to take into ac-
count possible class variables and class methods defined in the Employee class.

Class Variables

Creating class variables and class methods is done almost identically to creating
instance variables and instance methods. You write class variables and class
methods the same way that you've been doing, except that you start these defini-
tions with the keyword st at i ¢ Remember back in Chapter 6, before you learned
about methods, how you used the keyword st at i cto define code that executed
when a class was first loaded? Just as the keyword st at i cwas used to associate a
chunk of code with a class, st ati c can also be used to associate a variable or
method with a class.
For example, here’s how the Triangle class could define a class variable:

static int total Angl es = 180;

DEFINING CLASS VARIABLES AND METHODS

This defines an i nt variable called t ot al Angl es Since we’ve declared it as
stati G it belongs to the class itself. That is, t ot al Angl esdoes not belong to any
particular object, but each object can still refer to it just by using its name.

By the Way
Notice that we’ve also initialized the variable to a value. You can do this
with any type of variable, from method variables to instance variables to
class variables. You can always change the value later. As mentioned previ-
ously, if you don't initialize an instance variable or class variable, Java as-
signs a default value to it. For i nt values, this default value is 0.

If we were to define t ot al Angl eswithout the keyword st at i ¢ each triangle
object would maintain a separate value for t ot al Angl es(that is, without the key-
word st at i ¢ you would have defined an instance variable). The first triangle you
create could change its instance variable named t ot al Angl esto 190; the second
triangle could change its instance variable named t ot al Angl esto 170; neither tri-
angle’s instance variable would affect the other.

By contrast, class variables are shared variables. That is, with a class variable,
there is only one version of it, and that version is maintained with the class. All
objects belonging to a particular class can access that class’s stat i ¢ variables.
These objects can also change the value in the variable. In other words, a static
variable is shared among all the objects made from that class.

For example, you might imagine keeping track of the number of triangles you
create in a Trig applet. Each time you create a new triangle object, you might in-
crement a class variable defined in the Triangle class. As with instance variables,
all you need to do to refer to the class variable is to use its name. For a class vari-
able called nunilr i angl eseach triangle object could increment it like this:

nuniri angl es++;

This is fine for accessing the class variable in an object based on the class that
defined it, but how would you access the class variable from some other object—
say, from the applet? The applet could not refer to nunilri angl esbecause num
Tri angl esis undefined for the applet. We solved this same kind of problem for
instance variables by prefixing the variable name that held the object to the in-
stance variable name, placing a dot between them. Since we don’t keep track of
classes by using variables, how do we refer to the class variable for a particular
class?

177

OBJECTS

178

The solution is to use the class name, rather than the name of a variable that
refers to an object. For example, to refer to the Triangle’s class variable nuniTr i an-
gl es, you can write

Tri angl e. nunTri angl es;

You can also use this notation if you need to distinguish between a class vari-
able and a local variable that both share the same name. (You'll see an example of
this in the upcoming sample programs.)

Class Methods

Just as you can have class variables, you can also have class methods. Class meth-
ods are good for associating behavior with a particular class.

For example, you might have defined an instance method called addAngl es()
that adds all the angles in a triangle, perhaps to verify that they do indeed total
180 degrees. Your method might look like this:

int addAngl es(int anglel, int angle2, int angle3) {
return anglel + angle2 + angle3;

Nothing in this method, as written, relies on a particular object. Noticing this,
you might decide to associate this method with the Triangle class. To do this, just
prefix the word st ati cin front of the method definition, and voila, you have a
class method:

static int addAngl es(int anglel, int angle2, int angle3) {

return anglel + angle2 + angle3;

As with instance methods, an object made from the class defining the class
method can invoke the method in the usual way:
int total = addAngl es(40, 60, 80);

You can also prefix the class method with the class’s name to invoke it from
other classes or from other objects or to disambiguate it from other methods with

the same name:

int total = Triangle.addAngl es(40, 60, 80);

MORE SAMPLE PROGRAMS

In addition to your own class instance variables and class methods, Java pro-
vides a lot of class methods and class variables for you to use. For example, Java
defines the mathematical value of pi as a class variable in a class called Math. (You
would access this by writing Mat h. Pl.) Java defines a whole slew of colors as class
variables in a class called Color. (You can access these by writing Col or. r ed
Col or . bl ue and so on.) You'll learn about these and others class variables and
methods in upcoming chapters.

Class Methods Versus Instance Methods

Though class methods and instance methods might seem similar at first glance,
there’s a crucial difference between them: Class methods are not associated with a
particular object. Therefore, class methods are not good to use in situations where
you want to access an object’s data.

Similarly, the Java-supplied variable named t hi s is not defined for class
methods because when a class method is executing, there’s no current object. The
t hi s variable exists only when there’s an object responding to a method invoca-
tion, which is not the situation with a class method—it’s the class that is respond-
ing to the method, not a particular object.

For example, the class method addAngl es()defined in the previous section
would not be able to access a particular triangle’s instance variable just by naming
it, such as referring to si delor even tot hi s. si delHowever, all is not lost; if the
class method can get access to a variable that holds an object—say, in a variable
called t 1—then this method can still refer tot 1. si del

More Sample Programs

We'll illustrate how to access class variables and class methods in two more sam-
ple programs.

ClassVar.u

For our example of using a class variable to store data with a class, open the sub-
folder 09. 04- vari abl ein the Learn Java Projects folder. Before running the ap-
plet, take a look at this definition for a class variable and an i ni t () method:

static int test = 20;

public void init() {
Systemout.printin("test =" + test);

179

OBJECTS

180

int test = 30;

Systemout.println("test =" + test);
Systemout.println("dassVar.test =" + CassVar.test);

}

This is the class variable and i ni t () method for the applet you're about to
run. What do you think each of these three Syst em out . pri nt| n(ktatements
will display in the Java Output window? You can see that the class variable starts
out as 20, but what happens after we define a new local variable with the same
name but set to a different value? Once you feel you've made your best guess,
double-click Cl assVar . pland select Make from the Project menu to compile the ap-
plet. Run the program by dropping the file Cl assVar . ht monto the Metrowerks
Javaicon. An empty applet will appear, and the Java Output window will contain
three lines that look like this:

test = 20
test = 30
Cl assVar.test = 20

How’d you do? Did you guess correctly? Let’s see what causes these lines to
be displayed.

Stepping Through the Source Code

Open O assVar . j aveither by double-clicking this file name in the project win-
dow or by double-clicking the file icon. There is only one simple class definition in
this file. This is for an applet named ClassVar:

public class O assVar extends java. appl et. Applet {

The first thing this applet does is define a class variable:

static int test = 20;
You can see that it’s a class variable because of the keyword st ati ¢ The applet
initializes this class variable to 20.

The applet then provides an i ni t () method. This method first displays the

value of its instance variable, named t est, which is what causes the first line that
reads “test = 20” to appear in the Java Output window:

MORE SAMPLE PROGRAMS

public void init() {
Systemout.println("test =" + test);

After this line is displayed, the method defines a local variable called t est—
the same name as the class variable! It then writes the variable test to the Java
Output window. What gets displayed is the local variable, so “test = 30” appears
in the Java Output window:

int test = 30,
Systemout.printin("test =" + test);

This brings up an interesting point. If parameters or local variables with the
same name as instance variables or class variables are used in a method, it’s the
parameters and local variables that get preference. We can still access the class
variable, however, by prefixing the class name in front of the class variable name

and separating the two with a dot. In our case, we can do this by writing Cl ass-
Var. t est:

Systemout.println("Cl assVar.test = " + C assVar.test);

}

This time, the class variable appears in the Java Output window.

ClassMethod.p

For an example of a class method, open the subfolder 09. 05- met hodin the Learn
Java Projects folder. Open Cl assMet hod. jand make the project. Run the program
by dropping the file O assMet hod. ht monto the Metrowerks Java icon. An empty
applet will appear, and the Java Output window will contain the line

3 circles were created.
Let’s see what makes this happen.

Stepping Through the Source Code

Open O assMet hod. j avaither by double-clicking this file name in the project
window or by double-clicking the file icon. The applet starts by defining three

181

OBJECTS

182

local variables in the i ni t () method to hold circle objects (the Circle class is de-
fined in this file after the Applet class) :

public class O assMethod extends java. appl et. Appl et {

public void init() {
Circle cl1, c2, c3;

The applet then creates three circle objects. Each time, it increments a class
variable defined by the Circle class:

cl = new Circle();
Circle.nunC rcl es++;

c2 = new Circle();
Circle.nunCircl es++;

c3 = new Circle();
Circle.nunC rcl es++;

After the three circles are created, this code invokes a class method defined by
the Circle class:

Circle.displayNunCircles();

Notice that for the class variable nunGCi r ¢l esand class method di spl ayNum
G rcl es() the applet has to prefix the class name onto the variable and method
name since this variable and method are not defined for the applet but for a differ-
ent class (that is, for class Circle).

The Circle class starts by defining nunGi r cl esas a class variable:

class Circle {

static int nunCi rcles;

The class then defines the class method called di spl ayNunCi r ¢l es(.) This
method can access the class variable named nunCi r cl esdirectly, without the

need for prefixing nunCi r cl eswith Ci rcl eand a dot (though that would have
worked, too):

static void displayNunGircles() {
Systemout.println(nunCircles + " circles were created.");

This class method can access the class variable by name because the class
variable and the class method are both defined in the same class. Since the applet
incremented the class variable nunCi r cl esthree times, this line prints out “3 cir-
cles were created.”

Review

So now that you’ve explored objects, you should have a sense of what objects are
used for and how to store data and define behavior for your own objects. Vari-
ables were first discussed in Chapter 6, and now you’ve seen how to use them in
your objects. Methods were first discussed in Chapter 7, and now you’ve seen
how to use methods in your objects as well. You've learned about instance vari-
ables and instance methods, how to define them and use them, and about a spe-
cial variable supplied by Java called t hi s.

You've also seen that classes themselves can define data and behavior. This is
a good technique to use when you have data or behavior that belongs to all of the
objects of a certain class in general and does not seem to belong to any particular
object. Class methods are different from instance methods, however, in that they
are not associated with a particular object and so do not have easy access to a par-
ticular object’s instance variables.

What’'s Next?

With a basic understanding of objects, it’s time to look at what classes Java pro-
vides for you. You can create objects out of Java’s classes and use these objects in
your own programs. Java organizes its classes into packages. Chapter 10 takes
you on a brief tour of these packages and shows you how you can create packages
of your own.

Chapter 10 also discusses a concept central to object-oriented languages such
as Java: inheritance. By using inheritance, you'll see how you can mix in your
own custom data and behavior to extend the default behavior of the classes that
Java provides for you. You'll also learn how you can use inheritance to organize
your own classes into hierarchies.

WHAT'S NEXT?

183

Chapter 10

Java’'s Classes
and Inheritance

This chapter will delve into one of the most powerful features of object-oriented
programming. This feature is inheritance, and it allows you to start with a class
that is already fully functioning and create your own class by extending it, adding
to its capabilities.

Since inheritance involves working with a predefined set of classes, we'll also
take a better look at what classes Java supplies for you already and how you can
use these classes in your own applets. In particular, we’ll look at these classes
with an eye toward what it means to inherit from the classes that Java provides.

What Is Inheritance?

We started programming in Chapter 5 by defining the simplest possible Applet
class:

public class M/Appl et extends java.l ang. Appl et {
}

We found that we could compile and run this applet just fine, even though it
didn’t appear to do much. Or did it? Actually, this applet had some behavior of its
own. You could resize the applet, for example. And the applet certainly started
just fine. Something was responding to the i ni t () and st art () methods that the
Applet Viewer invoked on this applet, even if we didn’t write any code ourselves
to respond to these methods.

Where did this behavior come from? We didn’t supply any behavior: Our
class definition was empty. What happened was that our applet’s default behav-
ior came from Java’s Applet class. Whenever we create our own applet, what we
are really doing is starting with Java’s Applet class as a base and adding to it. This
idea is depicted in Figure 10.1.

185

JAVA’'S CLASSES AND INHERITANCE

186

additional code
added to the Applet class

Applet class

Figure 10.1 Building on the Applet class supplied by Java.

What is this combination of the Applet class and additional code? Taken to-
gether, this is a new class, an extension to the Applet class, which we’ve called
MyApplet in the preceding code snippet. The class MyApplet can do everything
that the Applet class can do, plus any additional code we write. For example, if
we provide an i ni t () method for MyApplet that displays “French Roast” in the
Java Output window, then MyApplet behaves just like the Applet class, but it also
does more: It displays “French Roast” when the applet initializes itself.

Why Is Inheritance Good?

As it turns out, Java allows you to extend just about any class, not just the Applet
class. This means you can build your applets by extending what Java provides.
The advantage of this is that you can start with something that already works. In
fact, Java’s classes already work great, and you can build on Java’s classes to write
your own.

For example, perhaps you want to keep track of a collection of data in a par-
ticular way. Well, Java already supplies a class that keeps track of a collection of
data (this class is called Vector, and you'll work with vectors in Chapter 12). If you
find that one of Java’s classes is almost good enough for what you want, but you
want it to do something more than it does by default, you can build on this class,
extend it, and add your own behavior to it.

As another example, maybe you want to provide behavior that performs
arithmetic with imaginary numbers, which, taken together with nonimaginary
numbers, are called complex numbers. If you're not familiar with the idea of
complex or imaginary numbers, all you need to know to understand this example
is that they are extensions to the integer and fractional numbers you're already fa-
miliar with. Java provides classes that provide behavior for numbers (one of these
classes is called Integer). If you want to extend the behavior for this class, you can
add your extra code to the Integer class that allows you to work with complex
numbers.

For a third example, perhaps you want to work with dates based on the Jew-
ish or Chinese calendars. Java already provides a Date class. Rather than writing

WHAT IS INHERITANCE?

additional code
added to a base class

abase class

Figure 10.2 Extending a base class with your own additional code.

all your own date functionality, you can extend what Java already provides by
writing your own code to work with other calendar systems.

These classes, and many more, can save you all sorts of time and effort be-
cause, if you write your own classes, you can start with a base level of behavior
and then add to it. In other words, you don’t have to start from scratch. This is il-
lustrated in Figure 10.2, which makes the concept in Figure 10.1 more generic.

How Inheritance Works

As you know, classes define variables and methods for their instances. For exam-
ple, let’s say you have a class called Dwelling, defined like this:

class Dnelling {
int squareFeet;
voi d knock() {
System out. println("Knock, knock");

This class defines an instance variable called squar eFeet If you invoke a
dwelling object’s knock() method, it will display “Knock, knock” in the Java Out-
put window. We've seen examples of this kind of thing already.

Now, what happens when we want to define a class called House? Maybe our
house has a bool eaninstance variable to indicate whether it has a fireplace or not.
Do we have to start from scratch and repeat ourselves, like this:

cl ass House {
i nt squareFeet;
bool ean hasFirePl ace;
voi d knock() {
System out. printl n("Knock, knock");

187

JAVA’'S CLASSES AND INHERITANCE

188

This seems like a waste of code to repeat this definition, and in Java it would
be. Since the House class is just an extension to the Dwelling class, you can just ex-
tend the Dwelling class and add the additional features that make it a House class.
Instead of what we just wrote, we could write our House class like this:

cl ass House extends Dwelling {
bool ean hasFirePl ace;

Very easy! Now house objects can do everything that dwelling objects can do,
plus houses also know whether they have a fireplace or not. For example, if we
have the preceding class definitions, we can write some code such as:

House h = new House();
h. knock() ;

and the words “Knock, knock” will appear in the Java Output window. How does
this happen?

When we invoke the knock() method on the house object, Java first looks in
the house object for this code. However, it doesn’t find it there. So it looks in the
class that was extended to make the House class—which is the Dwelling class.
And there it is! The Dwelling class defines the instance method named knock().
Java executes this method, and “Knock, knock” appears in the Java Output win-
dow. Figure 10.3 illustrates this sequence of events. Notice that the method invo-
cation gets passed up the class hierarchy (the structure of subclasses and
superclasses) until one of the classes provides the appropriate method.

code for the

Dweélling class . .
3. knock()isfoundin

knock() { Dwelling; its code is
} executed

2. knock() isnot found in House;
look for it in Dwelling

code for the

House class | @ L invokeknock()

Figure 10.3 A sequence of events showing how inheritance works.

WHAT IS INHERITANCE?

This also implies that we can access the variable squar eFeetby using an in-
stance of class House. We could write

House h = new House();
h. squar eFeet = 2200;

The House class doesn’t define squar eFeet, of course; this instance variable is
defined by Dwelling. Since House inherits everything that Dwelling has, we can
set the house’s squar eFeetvariable through code like that just shown.

Some Terminology

The picture that most developers envision for this relationship between classes
like Dwelling and House is that Dwelling is at the top level and House is at the
bottom. House is said to be a subclass of Dwelling, and Dwelling is a superclass
of House. This image is shown in Figure 10.4.

House is also referred to as a descendant of Dwelling because it descends
from Dwelling, and Dwelling is an ancestor of House. This whole process of ex-
tending classes is called inheritance, and thus we can say that House inherits
from Dwelling. (As you can tell, some of this terminology comes from the idea of
genetic inheritance, where children take on the characterstics of their parents.)
That is, House inherits all the traits of Dwelling—all the methods and variables.
House then can add some new methods and variables of its own that are com-
pletely unknown to the Dwelling class. (Notice that if we went back and added a
new variable or method to the Dwelling class and House still extended Dwelling,
then House would also acquire the new variable or method in Dwelling. Again,
the House class does everything that Dwelling does, plus its own custom code.)

Dwelling

House

Figure 10.4 A simple diagram conveying a subclass and superclass relationship
between House and Dwelling.

189

JAVA’'S CLASSES AND INHERITANCE

190

When to Use Inheritance

There are two great uses for inheritance that are closely related. First, you can use
inheritance to extend a base set of working code to make it do a little bit more.
Second, you can organize your classes into hierarchies so that similar classes can
share as much code as possible.

Extending Classes

One of the most obvious examples of extending a class in Java is extending Java’s
Applet class. By extending this class, you can write applets that do things other
than just display a blank window! Every applet around starts with the base be-
havior of the Applet class and builds on it to create a new, custom class. The com-
plexity of the applet you want to create determines how much new code you need
to add to Java’'s Applet class.

Java also defines a class called Object. This class provides some very basic be-
havior, such as the ability to create new objects and the ability to see whether the
object is equal to another object. By extending this base Object class, you gain a
core level of behavior that you'll want all of your own objects to have as well.
(We'll discuss the Object class and its role in more detail later in this chapter.)

Finding Hierarchies
Sometimes, your classes might grow out of classes you’ve already defined. For ex-

ample, perhaps you have defined a class called Square, like this:

cl ass Square {
static int dianmeter = 20;

Col or col or;
i nt X;
i nt y;

void draw() {
Systemout.println("draw the square");

}

The Square class defines a class variable called di anet er (we could also call
this variable si de but you'll see why we chose the name di anet er very soon). It

WHEN TO USE INHERITANCE

defines instance variables to maintain a color for the square, as well as a screen lo-
cation for where the square should be drawn. The Square class defines a method
for drawing the square. For now, this method just writes a message to the Java
Output window. (In Chapter 11, you'll see how to actually draw a square on the
screen.)

Perhaps at some time later in your application’s development, you also find
you need a Circle class, which you want to define like this:

class Circle {
static int dianmeter = 20;

Col or color;

int X;
i nt v,
void drawm) {

Systemout.println("draw the circle");

It seems like there’s a lot of overlap here. Both shapes define instance vari-
ables that keep track of their current color and screen location. They also both de-
fine methods named draw(), though each shape type implements draw()
differently. Is there some way we can combine these two classes into a common
class and then extend that common class to implement a square and also a circle?
There certainly is, and this is what inheritance is all about!

Let’s create a class called Shape that groups together the common variables:

cl ass Shape {
static int diameter = 20;

Col or color;

int x;
int y;

Armed with this Shape class, we can now create the Square and Circle classes a
little more compactly. Here’s how we would create each:

191

JAVA’'S CLASSES AND INHERITANCE

192

cl ass Square extends Shape {
void draw() ({
Systemout.println("draw the square");

class Circle extends Shape {
void draw() ({
Systemout.println("draw the circle");

Gone are the instance variables duplicated in both the Square and the Circle
class definitions. Now all we have to do is extend the Shape class and implement
draw(). The Square has all the methods and variables of class Shape, plus any
variables and methods it defines on its own. The same goes for the Circle class. In
the example here, the Square and the Circle inherit the variables col or, x, and y.
The Square and Circle each make themselves unique by drawing in different
ways.

Creating class hierarchies is a powerful approach for developing your own
software. If at some later time you need to create rectangles, ellipses, pentagons,
and other shapes, you can simply extend the Shape class, and much of your work
is done for you. Just as extending Java’s classes can speed up your application de-
velopment, extending your own classes can also speed up your application
development.

Advanced Inheritance Topics

So far in this chapter, we’ve covered the basics of inheritance, but the power of in-
heritance doesn’t end here. This section describes a few more features of inherit-
ance that help you control how classes and subclasses interact with one another.
For example, can you stop a subclass from inheriting a variable or method? Can
you restrict access so that only subclasses can access a variable or method? The an-
swer to both questions is yes, and this section shows you how.

Private Variables and Methods

If you define an instance variable in a class definition, and you want to ensure that
only methods defined by that class can access that variable, you can define the
variable using the keyword pr i vat e For example, you might define an Employee
class like this:

ADVANCED INHERITANCE TOPICS

cl ass Enpl oyee {
private String ssn;
i nt enpl oyeeNunber ;

This code would store the employee’s Social Security number in a pri vat e
variable, but it would make available a different employee number in a field that
does not have this restriction. Now, the only methods that can access the instance
variable ssnare those defined by the Employee class. For example, if we make an
instance of class Employee, like this

Enmpl oyee e = new Enpl oyee();

we cannot get to the variable ssnby writing e. ssn Only the Employee class itself
can do this. For example, we might write an access method for the Social Security
number and put it into the Employee class. This new access method might rely on
a bool eanvalue that indicates whether the ssnshould be made available or not:

cl ass Enpl oyee {
private String ssn;
private bool ean makeAvail abl e;
i nt enpl oyeeNunber;

String getSsn() {
i f (makeAvail abl e)
return ssn;
el se
return null;

Now, other objects can get to the ssnvia the get Ssn() method, as long as the
employee object does not have its makeAvai | abl evariable set to f al se(of course,
we would still need some way to set the value of makeAvai | abl gwhich we’ve
declared as pri vat ehere).

Suppose we created a subclass of Employee, like this:

cl ass RetiredEnpl oyee extends Enpl oyee {
Date retirenentDate;

193

JAVA’'S CLASSES AND INHERITANCE

194

Even instances of RetiredEmployee could not access the variable ssn. Using the
keyword pri vat ereally does make it private to the class defining it and stops this
variable from being inherited by subclasses.

It's also possible to make a method pri vat e Methods that are pri vat ecan
be invoked only by methods defined by that same class.

Protected Variables and Methods

In the example just given, suppose we thought it was OK if subclasses had access
to ssn, but not other objects in general. Java provides a way to do this through the
keyword pr ot ect ed If a variable or method is pr ot ect ed then any descendant
can access it, but other objects in other parts of the class hierarchy cannot. So, our
subclass of Employee called RetiredEmployee could access ssnin the Employee
class and could invoke pr ot ect edmethods defined in the Employee class. Inher-
itance is still occurring, but access is restricted to a class’s descendants.

Abstract Variables and Methods

Back in the example with the classes Shape, Square, and Circle, we defined a
dr aw() method for the Square and Circle, but we left it out of the Shape class. Un-
fortunately, taking this route leads us into a problem. Consider this slightly sim-
pler version of the classes Shape, Square, and Circle:

cl ass Shape {
int x;
int vy;

cl ass Square extends Shape {
void draw() ({
Systemout.println("draw the square");

class Circle extends Shape {
void draw() ({
Systemout.println("draw the circle");

ADVANCED INHERITANCE TOPICS

One of the great advantages of creating a hierarchy like this is that we don’t
need to define different variables to hold different shape types. That is, instead of
defining the variables

Square s;
Crcle c;

to hold a square and a circle, depending on what we need, we can just define a
variable that holds a shape

Shape s;

and use this variable with a circle object or a square object, as appropriate.

However, with our variable s defined to be a Shape instance, we run into a
problem if we want to invoke the dr aw() method in the circle or square because
the Shape class does not define dr aw(). For example, we can write the following
statement without any problem:

Shape s = new Circle();

However, if we tried to then invoke the circle’sdr aw() method, like this

s.draw();

the compiler would complain that dr aw() is not defined by the shape! We don’t
want to actually provide a dr aw() method for the shape; we just want the Shape’s
subclasses, Circle and Square, to implement dr aw(). What can we do?

What we can do is indicate in the Shape class that the subclasses will, in fact,
implement this dr aw() method, even though it’s not implemented in class Shape.
The way we do this is by declaring the method, without actually providing any
code for the method, and by using the keyword abst r act. Our new Shape class
would look like this:

abstract class Shape {
int Xx;

int vy;

abstract void draw();

195

JAVA’'S CLASSES AND INHERITANCE

Definition

196

Notice that we don’t provide any behavior for dr aw(). What's more, we’'ve
added the abst r act keyword to the class itself! The rule in Java is that if the class
defines an abst r act method, it can never be instantiated. That means the class it-
self must be abst r act. Only subclasses implementing the dr aw() method can be
instantiated.

Classes that can be instantiated are sometimes said to be concrete, which
differentiates them from abstract classes, which cannot be instantiated.

So, we’ve solved the problem of using the variable s to hold a circle and using
s to invoke the circle’s dr aw() method. The method is indeed defined for the
Shape class; it just doesn’t have any behavior associated with it. Instead, the be-
havior is supplied by the subclasses.

Overriding Methods

Let’s reconsider our example of the Dwelling and House classes, which looked
like this:

class Dwel ling {
i nt squareFeet;
voi d knock() {
System out. printl n("Knock, knock");

cl ass House extends Dwel ling {
bool ean hasFirePl ace;

}

Recall that if we created an instance of class House and invoked its knock()
method, like this

House h = new House();
h. knock();

the words “Knock, knock” would appear in the Java Output window.
However, what if we wanted to provide different behavior for the house?
What if we wanted to invoke the knock() method to ring the doorbell and say

ADVANCED INHERITANCE TOPICS

“Ding dong” instead? What we would need to do is override the knock()
method.

A subclass can override a method to change the behavior of the method. For
example, here’s how we could define our House class if we wanted different be-
havior from that of the Dwelling class:

cl ass House extends Dwelling {
bool ean hasFirePl ace;
voi d knock() {
Systemout. println("Di ng dong");

Now, when you invoked the house object’s knock() method, it would write
“Ding dong” to the Java Output window. However, instances of Dwelling would
still respond to knock() by displaying “Knock, knock.”

A Special Variable for Inheritance: super

Sometimes, you want to add to the behavior you inherit from your superclass, not
change it completely. Is there any way we can perform the Dwelling’s knock()
behavior in conjunction with our House’sknock() behavior? You can do just such
a thing by explicitly passing the method up the class hierarchy. This makes your
superclass’s method execute in addition to your own. For example, if we overrode
knock() in the House class, the words “Ding dong” would appear in the Java
Output window. If we then passed knock() to our superclass, the Dwelling’s
knock() method would execute, and the words “Knock, knock” would also ap-
pear in the Java Output window. The way we refer to our superclass is by using
the word super. Here’s how we could rewrite the House class to do this:

cl ass House extends Dwelling {
bool ean hasFirePl ace;
voi d knock() {
Systemout. println("D ng dong");
super . knock();

Using the super variable to refer to our superclass is similar to using thet hi s
variable to refer to ourselves. This relationship is shown in Figure 10.5.

197

JAVA’'S CLASSES AND INHERITANCE

198

super

this

Figure 10.5 Using the variable t hi s to represent the current object and the variable
super to represent its superclass.

Testing Objects

We mentioned that a variable defined as holding instances of a certain class can
actually hold instances of that class’s subclasses as well. For example, in our ex-
ample with the classes Shape, Square, and Circle, we could define a variable that
could hold either a Square or Circle object by writing

Shape s;

s could now hold an instance of one of class Shape’s subclasses—Circle and
Square. s cannot hold an instance of class Shape only because we defined the
Shape class earlier to be abst r act, which makes it impossible to create instances
of class Shape in the first place. A variable declared like this, however,

Crcle c;

could only hold a circle. It would not be legal to assign ¢ an instance of class
Square.

Since it is possible for a variable like s to hold different types of objects, Java
provides an operator to test the object to see what class it is or inherits from. This
operator is called i nst anceofand is used in the following format:

obj ect i nst anceof Cl assNane

where obj ect is a variable containing your object and C assNaneis the name of
the class the object may or may not be an instance of. i nst anceofwill return true
if the object is an instance of the supplied class name. It will also return true if the
object is an instance of one of its subclasses.

For example, to test whether an object is an instance of Circle, you can write

if (myQbject instanceof Circle)
Systemout.println("nyCbject is an instance of Circle");

ADVANCED INHERITANCE TOPICS

Since i nst anceofevaluates to true if the object is an instance of one of the class’s
subclasses, if myQbj ect really is a circle, i nst anceof will also evaluate to true if
you write

myCbj ect i nstanceof Shape

Class Object

You've already seen that you can create your own hierarchies of classes, and
you've read that Java provides lots of classes that you can use in your own ap-
plets. Now to combine these two ideas: Java also provides entire class hierarchies
that describe its own classes. These hierarchies of preexisting classes provide a
kind of scaffolding, or framework, on which you can build your own applets.

Java defines a class called Object, and, in Java’s class framework, the role of
Java’s Object class is key. In fact, Java’s Object class sits at the very top of Java’s
entire class framework. Every one of Java’s classes can claim class Object as its an-
cestor. Figure 10.6 shows a partial class hierarchy of Java’s class framework, with
class Object sitting over everything.

Why is Java’s class Object so important? Because it provides the minimum
level of behavior that all objects in Java must provide. Whether you know it or
not, you've been creating subclasses of class Object already! Of course, since
you're creating subclasses of class Applet, your Applet subclasses, such as MyAp-
plet, ultimately inherit from class Object as well, as shown in Figure 10.7.

Even a class like Circle, which we defined before like this

class Circle {
Col or col or;
int x;
int y;

Object

other classes
you haven’'t

I%atmed about Math System Date
y

Applet

Figure 10.6 Diagram showing a simplified version of Java’s class hierarchy.

199

JAVA’'S CLASSES AND INHERITANCE

By the Way

200

Object

Applet

MyApplet

Figure 10.7 Diagram showing MyApplet as a subclass of Applet, which traces its
ancestry back to class Object.

inherits from class Object! How is this possible? We didn’t indicate that Circle ex-
tends class Object. Nonetheless, Java turns such class definitions into

class Circle extends nbject(
Col or col or;
int x;
int vy;

Java does this for you because you must provide the behavior that is in class
Object. Otherwise, you would never be able to create new objects, and Java would
not be able to manage the objects in your computer’s memory. This means that
there’s no escaping Java’s class framework. You will always plug in somewhere.
Either you will explicitly inherit from one of Java’s classes, or Java will provide
Object as your superclass for you.

Since all of your own classes, as well as Java’s, can trace their ancestry back
to class Object, evaluating this piece of code

myQbj ect i nstanceof Obj ect

will always evaluate to true.

Now that we’ve looked at inheritance, and now that you have a sense that
Java provides classes for you, let’s look at how Java organizes its classes. Rather

than just provide you with a big collection of classes, Java collects its classes into
groups, called packages.

Packages

We’ve been using two of Java’s packages so far, though we haven’t explained this
yet. Let’s take a moment to understand how Java organizes its classes into pack-
ages and how we can use these packages ourselves. Then you'll see how we’ve
been using Java’s packages all along.

Java groups its many classes into six basic packages. Each package is focused
on a particular feature set of Java. There’s a package for developing user inter-
faces, there’s a package for communicating over the Internet, and so on. We’ll look
at these different packages in this section.

Using Packages

Classes within the same package can access one another’s variables and methods,
as long as those variables and methods are not defined using the keywords pri -
vat e or prot ect ed which changes the rules, as you've learned. You've already
seen how these restrict access to variables and methods.

When you create a new applet, all of the classes that are defined as part of that
applet are placed in the same default package. However, this default package is
separate from Java’s packages. The easiest way to use a class that is not in the
same package as your own is to import it first. For example, if you want to use the
Date class, which is in a package called util, you can import it like this:

i nport java.util.Date;
This line of code says that you will use a class called Date, which is located in
Java’s util package.

The other way to refer to a class that is not in the same package is to spell out
exactly which package that class belongs to, which is what we’ve been doing so
far with the Applet class. We've been subclassing Applet, but we can’t just say
public class M/Appl et extends Appl et

unless we first import the Applet class or tell Java how to find the Applet class. So,
we’ve been writing this instead:

public class M/Appl et extends java. appl et. Appl et

PACKAGES

201

JAVA’'S CLASSES AND INHERITANCE

202

This tells Java exactly which package to look in to find the Applet class—namely,
the package defined by Java called applet. If we wanted to, we could instead write

i mport java. appl et. Appl et ;
public class M/Appl et extends Appl et

You might have noticed that we have also been using a class called System.
We've used this class extensively to write messages to the Java Output window.
The reason we did not have to import System is that it belongs to a package called
lang. Java’s entire lang package is imported for you automatically. This package
contains many classes that support Java’s basic features, so Java imports all the
classes in this package without your needing to ask for them.

If you want to import all the classes in a package explicitly (and you often do),
you can use a wild-card notation by writing an asterisk (*). For example, there’s a
package called util that provides some useful utility classes. To import all of these
for use by your program, you can write

import java.util.*;

Note that all of your i npor t statements must come at the top of your source
file.

Public Classes

The variables and methods in classes, and the classes themselves, are, by default,
only available to other classes in the same package. If you want to make a class,
variable, or method available to classes in other packages, you need to declare
your class, variable, or method as publ i ¢ This is why you needed to declare your
Applet class as publ i c so that Java’s classes, defined in a different package, could
invoke your applet’s methods. This is why the life cycle methods of i nit(),
start (), stop(), and dest r oy()were declared as publ i ¢ This was done so that
Java could invoke these methods from the classes in its own packages.

What Classes Are in Java's Packages?

Java defines six major packages. Each package contains classes that provide a
broad area of functionality. These packages are as follows:

1. The lang package contains classes that provide basic behavior for your ap-
plets and for Java itself. These classes include Object, which is at the root of all
class hierarchies, and System, which allows you to write to the standard

output. There are many other classes in this package as well, and you’ll be in-
troduced to many of them as you progress through this book.

2. The awt package contains classes that help you create a user interface. This
package was named awt because this is an acronym for Abstract Windowing
Toolkit. The idea behind a windows toolkit is that it provides a way to create
user interface components, such as buttons, text fields, and menus, and con-
tainers that organize these components. These components allow users to in-
teract with your applet in a graphical way (that is, using the mouse, by
pointing and clicking), and they allow your applet to run in a graphical envi-
ronment (such as the Mac or Windows). The word abstract is meant to explain
that the classes in this package are not specific to any particular platform.
That is, if you create a button on the Mac using the classes in this package,
you can create a button for Windows NT using the same classes in this pack-
age. We'll touch more on this package in the next chapter, where we’ll start
creating user interfaces.

3. The io package is used for receiving input and sending output. For example,
you can use the classes in this package to read data coming in over the Inter-
net. You can also use the classes in this package to access files on your com-
puter’s hard drive.

4. The net package contains some very sophisticated classes that allow you to
write Internet applications with ease. For example, there are classes for deal-
ing with Universal Resource Locators (URLs), sockets to allow communica-
tion between a client and a server over the Internet, and other Internet and
networking functions.

5. The util package contains a bunch of miscellaneous classes that help with a
variety of programming tasks. There’s a class that is useful for working with
dates, a class for mathematics features, such as trigonometric calculations, a
class for generating random numbers, and more.

6. The applet package only defines the Applet class. We’ll continue to explore
the features of this class in upcoming chapters.

All of these packages and the classes inside them are available for you to use
as you see fit. You might even want to use these classes just for the data and meth-
ods they define. For example, the Math class defines a value for pi that you might
want to use at some point. This variable, named PI, is a class variable. How do
you think you access it? You got it:

Mat h. PI

PACKAGES

203

JAVA’'S CLASSES AND INHERITANCE

204

This just gives you a taste of what's available. You'll see many more examples
of using Java’'s classes as you forge ahead.

Sample Programs

The two sample programs in this section explore overriding methods, accessing
the code in an object’s superclass, and using keywords to control access to vari-
ables and methods in class hierarchies.

Triangle.p

For our first example, let’s return to our friend the triangle. Open the subfolder
10. 01- tri angl ein Learn Java Projects. Open Tri angl e. pand make the project.
Run the applet by dropping Tri angl e. ht onto the Metrowerks Java icon. A
number of messages will appear in the Java Output window, as shown in Figure
10.8.

The triangles =say:
1 == t27 true

t1 == 137 false
The objects =say:
t1 == t27 false

t1 == t37 false

Figure 10.8 The messages written by TriangleApplet to the Java Output window.

These messages relate to three triangles that we created in the code. At first,
we checked to see whether triangle 1 was equal to triangle 2 and triangle 3 by ask-
ing the triangle itself. Next, we checked to see whether triangle 1 was equal to tri-
angle 2 and triangle 3 by asking the triangle’s superclass, the object. Notice the
difference in the output. The triangles reported that triangle 1 was equal to trian-
gle 2, while the objects reported they were different.

Let’s check out the source code and see why this occurs.

Stepping Through the Source Code

The source code, located in Tr i angl eAppl et . j avalefines two classes. The first is
an applet; the second is a class called Triangle. Let’s look at the Triangle class first.

The Triangle class starts by defining instance variables for a triangle’s base
and height:

SAMPLE PROGRAMS

class Triangle {
int base;
int height;

The Triangle class then overrides a method that is defined by class Object.
This method is called equal s(), and it tests to see whether the object passed in as
a parameter is equal to the object responding to this method invocation. If the ob-
ject passed in is equal to the triangle, this method returns true. Otherwise, this
method returns false. Since equal s()is defined as a publ i cmethod in the Object
class, we've also got to declare this method as publ i chere in the Triangle class.
The equal s() method that the Triangle class defines starts by defining a variable
called t:

public bool ean equal s(Obj ect obj) {
Triangle t;

It then tests to see whether obj, the parameter passed in, is an instance of
class Triangle.

if (obj instanceof Triangle) {

If this parameter is a triangle, then we can go ahead and perform the special
triangle test. First, in order to work with the parameter as a triangle, we have to
get it into a variable that we declared as a Triangle. We had to declare it as an Ob-
ject in the parameter list because that’s how equal s() is defined in class Object,
and we're overriding this method. We can’t change the method’s signature (its
name and parameters), or Java will think we’re defining a new method. But now
we need a Triangle. The way we get obj into a variable for triangles is by casting.
(Casting is explained further in Chapter 12.) Suffice it to say that we can assign
this to a variable of type Triangle by writing

t = (Triangle)obj;

Once Java recognizes this object as a triangle, we can acquire its base and
height, which are instance variables of a triangle. If these are equal to the current
object’s base and height, then we’ll consider these two objects to be equal, and

we'll return true:

if (t.base == base && t.hei ght == hei ght)
return true;

205

JAVA’'S CLASSES AND INHERITANCE

206

For all other cases—that is, if the object is not an instance of class Triangle
or the base and height variables were not equal—we’ll indicate that these two tri-
angles are not equal by returning false:

return fal se;

The Triangle class also defines its own instance method called obj ect -
Equal s(). The mission for this method is to see what would have happened if we
had not overridden equal s(), but instead had left equal s()alone and let the Ob-
ject class respond to this method using its own code. We can get to the Object’s
equal s()method by using the super variable. obj ect Equal s()returns the result
of the Object’s equal s() method:

bool ean obj ect Equal s(Obj ect obj) {
return super.equal s(obj);

Now, let’s turn our attention to the applet and see how the applet uses this
Triangle class. The applet overrides the i ni t () method and defines three trian-
gles. The first and second triangles are set to the same base and height; the third
triangle holds a different base and height:

public class Triangl eAppl et extends java. appl et. Applet {
public void init() {

Triangle t1 = new Triangl e();
t1l. base = 10;
t1l. height = 20;

Triangle t2 = new Triangl e();
t 2. base = 10;
t 2. hei ght = 20;

Triangle t3 = new Triangle();
t 3. base = 12;
t3. hei ght = 52;

SAMPLE PROGRAMS

Then, we invoke each triangle’s equal s() method. When comparing triangle
1 to triangle 2, the triangle’s equal s() method, not surprisingly, reports that these
triangles are equal. Also not surprisingly, it reports that triangle 1 and triangle 3
are not equal:

Systemout.println("The triangles say:");
Systemout.println("tl ==1t2? " + tl. equals(t2));
Systemout.printin("tl == t3? " + tl. equals(t3));

The code that is in the Object class sees things differently. This code thinks
that triangle 1 does not equal triangle 2, and, as far as the object is concerned, it’s
right. These are different objects. The Object’s equal s() method also reports that
triangle 1 is not equal to triangle 3, as we would expect:

Systemout. println("The objects say:");
Systemout.printin("tl == t2? " + t1.objectEqual s(t2));
Systemout.println("tl == t3? " + t1. objectEquals(t3));

This example shows that overriding a method can change the behavior for an
object. It also shows how to invoke the code for an object that is contained in the
object’s superclass.

Next, we'll look at some of the keywords you can use to define instance vari-
ables and instance methods, and we’ll see how they affect access to these
variables and methods.

AccessApplet.u

Open 10. 02- accessin the Learn Java Projects folder. Open AccessAppl et . jand
make the project. Drop the AccessAppl et . ht nfile onto the Metrowerks Java icon.
The applet writes four lines to the Java Output window, as shown in Figure 10.9.

Circle: radius = 20

Circle: color = jawq.awt. Color[r=0,g9=0,b=2551]
Square: radius = 20

Square: color = jawa.awt. Color [F=255,0=255,b=2551

Figure 10.9 The messages written by AccessApplet to the Java Output window.

207

JAVA’'S CLASSES AND INHERITANCE

208

The applet creates an object that represents a circle and an object that repre-
sents a square. It sets the data for these objects and then prints out this data. The
Java Output window shows that the radius for both shapes is 20; it then displays
the colors for the shapes. The color for the circle is blue. This is indicated by the
red and green components having a value of 0, while the blue component has the
maximum value possible (255). The color for the square is white. This is indicated
by the red, green, and blue components each having their maximum value (255).
(You'll learn much more about colors in Chapter 11.)

Let’s look at the source code and see how it’s set up to control and limit access
to data within a class hierarchy.

Stepping Through the Source Code

Open AccessAppl et . java.There are four classes in this file: AccessApplet,
Shape, Circle, and Square. Let’s start with Shape, Circle, and Square.

The Shape, Circle, and Square classes are arranged in the hierarchy shown in
Figure 10.10.

The Shape class maintains some information that the Circle and Square
classes have in common. First, the Shape class is defined as abst r act because it
defines an abst r act method named dr aw(). Therefore, the Shape class can never
be instantiated itself. Only subclasses of the Shape class that have implemented
the dr awm() method can be instantiated:

abstract class Shape {
The Shape class defines a class variable named r adi us(this variable is shared
between both the Circle and the Square, which are subclasses of class Shape that

we’ll define next):

static protected final int radius = 20;

Shape

Circle Square

Figure 10.10 Hierarchy of the Shape, Circle, and Square classes.

SAMPLE PROGRAMS

Notice that this class variable is defined as pr ot ect ed This means that the
only classes that can access this variable are the Shape class itself and the sub-
classes of the Shape class. The applet, for example, would not be able to access
this class variable. In other words, we are making this class variable “private” to
this branch of the class hierarchy. (We've also defined this variable as fi nal,
which means it cannot be changed. You’'ll learn more about these variables in
Chapter 13.)

The next variable is an instance variable called col or. This variable is defined
as holding an instance of class Color, which stores a color in Java. Notice that
we’ve defined col or to be pri vat e This means that this variable can be accessed
only by instance methods defined by the Shape. Not even circle or square objects,
which inherit from class Shape, can access this variable:

private Col or col or;

Next, we've defined two i nt variables, x and y. These variables keep track of
a shape’s x and y locations on the screen:

i nt X;
i nt Y,

These variables are not declared as pr ot ect edor pri vat e This means that
any method in any class in the same package as the Shape can access these vari-
ables. For example, these variables can be accessed from the applet.

Next, we've defined the abst r act method named dr aw() that the Circle and
Square classes will have to implement:

abstract void draw();

Since the col or variable is pri vat € we’ve next provided two methods to set
and get the value for col or. The first method sets this instance variable:

voi d set Col or (Col or color) {

Now, here’s the reason we made the col or variable pri vat eto the Shape class.
The Shape class ensures that a shape’s color (for whatever reason) can never be set
to black. If other objects could access the col or variable directly, they could set this
variable to any color they wanted to, including black. However, by forcing other
objects to go through the set Col or ()method to set the color for this variable, the
Shape class can intercept any attempt to set this color to black. set Col or ()handles

209

JAVA’'S CLASSES AND INHERITANCE

210

such an attempt by setting the color to white instead. Otherwise, it allows col or to
be set to the new color:

if (color == Color. bl ack)
this.color Col or. whi te;
el se
this.color = color;

The Color class defines a whole bunch of class variables that define colors for
Java. These variables are common colors such as black, white, blue, red, and so
on. Since they’re class variables defined by the Color class, you can access these
colors by writing Col or . bl ackCol or. whi t ¢ Col or . bl ugCol or. r edand so on,
as we’ve done in the preceding code.

Since col or is pri vat ¢ if we want other objects to be able to get at it, we also
have to provide a method to retrieve the color, as well as setting it:

Col or getColor() {
return color;

The Circle and Square classes are straightforward by comparison. The Circle
class, for example, starts out by indicating it is extending the definition of class
Shape:

class Circle extends Shape {

Circle, then, is a subclass of class Shape; class Shape is a superclass of class
Circle. (Since all classes inherit from class Object, class Object is also an ancestor of
class Circle; class Circle is a descendant of class Object.)

Circle implements the dr aw() method so that it does not have to be an ab-
st ract class and can be instantiated:

void draw) {
It supplies two pri nt| n()statements for this method. The first displays the
radius for this shape (remember, this is a pr ot ect edvariable, which means sub-

classes can access it):

Systemout.printin("Grcle: radius =" + radius);

SAMPLE PROGRAMS

code for the

Shape class . .
3. get Col or ()isfoundin

getColor() { Shape; its codeis
} executed

2. get Col or ()isnot found in Circle;
look for it in Shape

code for the
Circleclass 1. invokeget Col or ()

Figure 10.11 Method invocations propagating up the class hierarchy.

The next pri nt | n()statement displays the color for the circle. It does this by
accessing the color using get Col or () The circle object dispatches this method to
itself. Not finding it there, Java will look in its superclass, which is class Shape,
where it does exist. get Col or ()works as we described, returning the value of the
pri vat evariable named col or in the Shape class. This sequence is shown in Fig-
ure 10.11.

With the color object returned by get Col or () we can use a method defined
for color objects called t oSt ri ng()} This method creates a string representing the
color information for that color object. Putting this inside a pri nt | n()statement
makes this information appear in the Java Output window. This is the color infor-
mation for red, green, and blue that we saw when we ran the applet:

Systemout.printin("Grcle: color =" +
getColor().toString());

Here's the Square class, which is almost identical to the Circle class:
cl ass Square extends Shape{

void draw) {
Systemout.println("Square: radius = " + radius);

211

JAVA’'S CLASSES AND INHERITANCE

212

Systemout. println("Square: color =" +
getColor().toString());

Now we can look at the applet itself. First, the applet imports the Color class
so that we can use it in all the classes in this file:

i mport java.awt. Col or;

Then, we've defined ani ni t () method for the applet. We start by creating in-
stances of the Circle and Square classes:

public class AccessAppl et extends java. appl et. Appl et {

public void init() {

Circle c new Circle();
Square s = new Square();

We then use the set Col or ()method to set the color of the circle to blue and
to try to set the color for the square to black:

c. set Col or (Col or. bl ue);
s. set Col or (Col or. bl ack) ;

However, you already know what will happen when we try to set the color to
black; it will be set to white instead! This is verified by what appears later in the
Java Output window.

Next, the applet sets the x and y instance variables for the circle and square.
Notice how we can access these variables directly because the AccessApplet class
is in the same package as the Circle and Square classes (by virtue of being defined
in the same file):

50;
60;

100;
200;

WHAT'S NEXT?

And finally, invoking the dr aw() method for the circle and square makes
each object display its data in the Java Output window:

c.draw();
s.draw();

We'll use classes very similar to the Shape, Circle, and Square classes defined
here in a number of applets coming up in the rest of this book.

Review

Inheritance allows you to extend existing classes. This allows you to start with a
base level of code that already works and then add to it to write your own, cus-
tom code. Inheritance also allows you to create class hierarchies, where you can
group together common code in superclasses to share code between classes.

By using special keywords, such as private protected public and ab-
st ract, you can obtain a great deal of control over your class hierarchies. You can
either let the default thing happen and have classes inherit all of the variables and
methods defined in their superclasses, or you can control which variables are in-
herited and which are not.

Java defines its classes in six different packages. You must import a class de-
fined in another package before you use its short name, and you can only use
publ i cclasses. (All of the classes in the lang package are imported for you auto-
matically.) Classes within the same package can freely communicate with one an-
other. You can use a wild-card symbol (*) to import all of the classes defined in a
particular package.

What's Next?

At this point, you've learned enough to begin building a graphical user interface
for your applet. In the next chapter, we'll paint in the applet and display user in-
terface components such as text fields, buttons, and checkboxes. We'll even learn
how to tell when the user has interacted with them, such as when the user types
in text or clicks a button. So hang on and let’s have some fun!

213

Chapter 11
Creating a User Interface

The first ten chapters brought you up to speed on basic Java concepts. These chap-
ters introduced you to the CodeWarrior Java development environment and
stepped you through enough code that you're probably itching to make your ap-
plet look like something by now, by golly! Enough of these applets with empty
windows! The good news is that you now know enough to start putting together
a user interface. In this chapter, we’ll create and arrange an applet’s user inter-
face. We'll display shapes, print messages, create text fields, buttons, and choice
lists, and we'll start interacting with the user by responding to mouse clicks and
keyboard entry.
There are two ways that your applet can present a face to the world:

1. Your applet can draw, paint pictures, and display messages. Users generally
cannot interact with drawn pictures and messages—they’re just for display
purposes.

2. Your applet can display user interface elements, such as buttons, text fields,
and choice lists. Users interact with these elements by clicking them, typing
text into them, and selecting choices they present. These elements allow users
to work with your applet and control what it does.

Generally, you will use a combination of these two techniques when you
make your applet appear the way you want it to. For example, the SimpleDraw
applet you worked with earlier is a prime example of using both of these tech-
niques in one applet. SimpleDraw provides two choice lists to allow the user to
select a shape type and a color. Then, this applet paints a shape on the screen
when the user clicks the applet. SimpleDraw uses user interface elements and
drawing techniques when presenting its face to the world.

This chapter will explain how to go about arranging your applet’s display
using both drawing techniques and user interface elements. We'll start with
drawing and then move on to creating and arranging interactive user interface
elements.

215

CREATING A USER INTERFACE

216

Drawing

Java provides a number of ways for you to draw in your applet. You can draw
lines, dots, circles, and squares. You can display images. You can draw in different
colors. You can even display text in your applet by drawing it. When you display
text, you can also control the way the text looks by choosing its font and color.

The idea of “drawing” text might sound strange, but think of it as painting
the text with a brush. The difference between drawing text and using a user inter-
face element, such as a text field, to display text is that when you draw text, the
user cannot edit the text. By contrast, when you use a text field to display text, the
user can edit the text (unless you set the property of the text field to be read-only).
This section will show you how to draw text; the next section will explain how to
create and display text fields to allow the user to enter text.

Drawing is centered around the pai nt () method. So, let’s start by looking at

pai nt ().

The paint() Method

Every time your applet needs to be redrawn, Java will invoke your applet’s
pai nt () method. You can provide a pai nt () method or not provide one, as you
desire. Up until now, we did not provide one. And what was the result? We had
an empty applet! Our applet did not provide any behavior when it was asked to
paint itself, so it presented an empty, gray window instead.

When does Java try to invoke your applet’s pai nt () method? This will occur
whenever the user does something that makes your applet’s display obsolete. For
example, if the user resizes your applet, your applet’s display will no longer be
current, and Java will invoke your applet’s pai nt () method. If the user is display-
ing another window on top of your applet and then closes that window, Java will
recognize that your applet must redisplay itself. Again, Java will invoke your ap-
plet’s pai nt () method.

What happens if the program itself does something that makes the applet’s
current display obsolete? For example, what if the applet changes the color of a
circle it's displaying every 10 seconds? If the applet wants to repaint itself, it can
ask for its pai nt () method to be invoked. The applet does this by invoking its
own repaint () method. Java then knows to invoke the applet’s pai nt ()
method.

DRAWING

Warning
You should never invoke your own pai nt () method directly because Java
keeps track of which parts of your applet have been recently refreshed and
which parts are “dirty.” If you invoke pai nt () directly, you circumvent
Java’s efforts to keep track of this information. However, if you invoke r e-
pai nt (), Java can then keep tabs on what's going on, so this is definitely the
safer method to invoke.

Here's the definition for an empty pai nt () method:

public void paint(Gaphics g) {
}

This method is declared as publ i cand does not return a value, just like the life
cycle methods. However, unlike the life cycle methods, pai nt () takes one param-
eter. This is an object that is created for you by Java. This object is an instance of
the Graphics class.

Let’s take a look at what the Graphics class is all about and how you can use
the graphics object to perform drawing operations.

The Graphics Class

When Java invokes your pai nt () method, it passes you an instance of class
Graphics. The simple way to understand the Graphics class is to think of it as de-
fining many methods for drawing. A graphics object can draw all sorts of shapes
and lines, and it can display text as well, but this ignores the question of where
your drawing goes. If you use a graphics object to draw a blue diamond, for exam-
ple, where is this blue diamond drawn? The whole truth is that a graphics object
is more than just a collection of methods that draw on the screen. Every graphics
object is also tied to a particular user interface object. When you draw by invoking
a graphics object’'s method, the particular graphics object you use determines
where your drawing shows up. If you use a graphics object tied to your applet,
your drawing ends up in your applet. If you use a graphics object tied to a button,
your drawing shows up in the button.

When you supply a pai nt () method for a user interface object, Java hands
you a graphics object tied to the object for which you’ve defined your pai nt ()
method. So, for your applet’s pai nt () method, the graphics object is tied to your
applet. If you create your own subclass of Button called MyButton and you sup-
ply a pai nt () method for MyButton, the graphics object passed to you in MyBut-
ton’s pai nt () method will be tied to the particular button that is being painted.

217

CREATING A USER INTERFACE

218

Warning

As we mentioned, graphics objects allow you to draw shapes such as rectan-

gles and ovals, lines such as straight lines and arcs, images, and even text. The
methods you’ll use the most when drawing with a graphics object are

e fillOval () which draws a solid oval (you can draw a circle by setting the

width and height of the oval to the same value).

e fill Rect () which draws a solid rectangle (as with the oval, you can draw a

square by setting the width and height of the rectangle to the same value).

e drawLi ne() which draws a line between two points.

e dr awAr c() which draws an arc within a rectangle, given an initial angle (0 is

at the three o’clock position) and an ending angle (positive angles make the
arc draw in a counterclockwise rotation).

e dr awl mage() which draws the image you pass to it.

e drawst ri ng() which displays the text you pass to it.

ics

You can also use a graphics object to find out about the current state of graph-
information. For example, here are two useful methods for setting useful

graphics information:

e set Col or () which sets the color to use when drawing.

e set Font () which sets the font to use when displaying text.

There are many more instance methods defined by the Graphics class. You

can check out the documentation for the classes for a complete list. You can also
look in Chapter 15 for information on how to look up information using the
HTML files documenting Java’s packages.

In general, you should never try to create your own graphics object. Instead,
use the one that Java provides for you in the pai nt () method. Another way
to get a graphics object is to ask Java for the one that is tied to a particular
user interface component. You can do this by invoking the component’s
get Gr aphi cs()method, which will return a graphics object. If the compo-
nent is not currently displayed on the screen, get Gr aphi cs()returns null.

Color

Java provides a class called Color. This class makes it unlikely that you'll ever cre-
ate any color objects yourself, although it’s easy enough to do so. The beauty of
Java’s Color class is that it defines a number of class variables that already contain
predefined color objects. These include most common colors, such as blue, red,
yellow, green, orange, black, white, and gray. These class variables are named
after the colors they encode, so to get a color object that represents red, for exam-
ple, you can simply refer to Col or . r ed To get a color that is set for blue, you can
use Col or. bl ue

To create your own color, you need to supply the Color’s constructor with the
red, green, and blue components of your color. Each of these three color compo-
nents ranges on a scale of 0 (no trace of this color is in the overall color) to 255 (use
this color at full intensity).

You would need a color chart to figure out all the many colors you can create
by ranging the red, green, and blue components between 0 and 255, but here’s a
sense of what’s happening. You can think of each of these colors (red, green, and
blue) as a spotlight. If none of them are on, you have darkness (black). If all of
them are on, the total light appears white. If only one spotlight is on, the light ap-
pears to be that color (red, green, or blue). If different spotlights are on with differ-
ent intensities, you can create every other color there is. (Your television and
computer monitor use this exact same technique to create colors, by the way.)
Here are some examples.

If you had the blue component set to 255 and the red and green components
set to 0, the resulting color would be blue. If you had the red and green compo-
nents set to 255 and the blue component set to 0, the resulting color would be yel-
low (really). To get black, you would set all three components to 0. To get white,
you would set all components to 255. To get gray, you would set all components
midway between 0 and 255, or to 127.

Here’s an example of creating a new color object that produces orange, which
results from a combination of red and green in different intensities and no blue
component:

Col or nmyOrange = new Col or (255, 200, 0);

As we said, you'll usually just use a color object that has been created for you
and is maintained by the Color class. You'll use a color object when you draw. For
example, to set the current drawing color, you use a method provided by the
graphics object called set Col or () To set the current drawing color to pink, for
example, you could write set Col or (Col or. pi nk)Then, any lines, shapes, or text
you drew using that graphics object would show up in pink.

DRAWING

219

CREATING A USER INTERFACE

220

Fonts

When you want to use the graphics object to draw text, you'll sometimes be con-
cerned about what font your text appears in. You can use the get Font ()and set -
Font () methods provided by the graphics object to get and set the current font,
and you’ll use a font object, much as you use a color object, to specify a particular
font.

Java does not predefine a bunch of fonts, as it does with colors. However, it's
very easy to create a particular font object. All you need to do is specify the name
of the font, its style, and its point size when you invoke the constructor for the
Font class.

These are pretty easy parameters as far as the font name and point size are
concerned. The style is a little trickier and we’ll get to that in a moment. You can
refer to a font name using a string, as in “Helvetica,” “Courier,” “Times Roman,”
and so on. Typical point sizes are 10, 12, 14, and 18. The styles are provided by
class variables defined by the Font class. Here are the ones you’ll use most often
(it’s clear what style each class variable represents):

e Font.PLAIN
e Font.BOLD
e FontITALIC

For simple styles—for example, for a font that is italic, or bold, or plain you
use the appropriate constant on its own. Here’s an example of creating a font that
is an italic Helvetica in size 14:

Font f = new Font("Helvetica", Font.|TALIC, 14);
In case you're wondering,
the font looks like this.

If you want to combine italic and bold, you use the logical OR operator that
we touched on in a tech block in Chapter 6. This combines the values represented
by Font. | TALI Cand Font. BOLDand produces a value that Java recognizes as

meaning both. So, to make the preceding font italic and bold, we would write

Font f = new Font("Helvetica", Font.|TALIC | Font.BOLD, 14);

JAVA’S USER INTERFACE ELEMENTS
In this case,

the font looks like this.

Java’'s User Interface Elements

Java provides a whole bunch of classes that define user interface elements. The
way that you use these classes is by creating instances of them and then arranging
them inside your applet. This chapter will go about showing you how to do this.
Keep in mind that Java’s user interface elements work in any operating envi-
ronemt—Windows NT/95, Solaris, the Mac, and wherever else Java exists. Of
course, we'll use the Mac to develop our own user interfaces, but the same code
we develop on the Mac to present a user interface will work anywhere.

Some User Interface Components You Can Use

Java provides classes that implement all of the standard user interface elements
you've come to expect from modern software applications. These include

e Text fields, which allow the user to enter text using the keyboard.
e Choice lists, which present a pop-up list of choices for the user to select from.
* Buttons, which perform some action when the user clicks them.

* Checkboxes, which allow the user to choose an option (if assigned to a check-
box group, only one checkbox will be selected at a time).

e Labels, which display some text for titles and information (but which the user
cannot edit).

Figure 11.1 shows an example of an applet that displays a choice (currently
displaying “Apple”), a text field (currently blank), a button (that says “Click me”),
a label (that says “I am a label”), and three checkboxes (Yes, No, and Maybe) in a
checkbox group. (You can find the source code for this applet in the Learn Java
Projects folder under 11. 01- conponent s)

Figure 11.2 shows how you can interact with these components, displaying
new choices to select from, entering text into the text field, and selecting a new
checkbox (you can also click the button, but you can’t interact with the label).
Here, the user has clicked the choice list and is currently holding down the mouse
button. This makes the choices in the choice list visible, allowing the user to slide
the mouse cursor to the appropriate choice to select it. The user has also typed
some text into the text field and has selected a new checkbox. Selecting the new

221

CREATING A USER INTERFACE

222

=[1= Applet Viewer: UlApplet.class

[Apple] | | (ctick me)

| arna label {:." Yes '::l'] ':E' FMaybe

applet started

=]

Figure 11.1 An applet that displays several user interface elements.

EE= npplet Viewer: UIApplet.class

[Taz &rt Glasg |
Banana

Cherry ® Yes 0 Mo () Mayhe

applet started

El

Figure 11.2 Interacting with the user interface element.

checkbox has unselected the previously selected checkbox, which was Maybe.
This occurred because these three checkboxes are part of the same group. If they
did not belong to the same group, they would behave independently, and more
than one checkbox could be selected at the same time.

Java provides some other user interface components that we won’t go into
here. These include menus, scroll bars, and text areas, among others. Check out
Appendix G for information on where to find examples of these other
components.

There is also another set of classes that allows you to arrange these compo-
nents in relation to one another and group together related components. We'll ex-
amine some of these classes, called layout managers and containers, later in this

JAVA’'S USER INTERFACE ELEMENTS

chapter. For now, let’s take a look at each one of the user interface components
displayed in the applet in Figure 11.1 to understand how we can go about creating
them.

Creating New Elements

It's fairly straightforward to create user interface components like the ones in the
applet in Figure 11.1. All you have to do is perform the following three steps:

1. Create a new instance of the appropriate component class.
2. Initialize the component so that it contains the choices you want.

3. Add the component to your applet’s display.

When you create a user interface, you most likely want to create it once, when
your applet begins, and never again. This means that, most of the time, you will
create your user interface in your applet’s i nit () method. That's what we've
done for the applet in Figure 11.1. Let’s look at each of the five components we
displayed in our simple applet one at a time.

Buttons

One of the button’s constructors takes a string, which allows you to name the but-
ton when you create it. For example, one way you can create a button titled “Click
me,” like we did in the applet just shown, is to write

Button myButton = new Button("dick ne");

Labels

Labels are created similarly to buttons. You can provide a string for the label
when you create it. The difference between buttons and labels is that you can in-
teract with a button by clicking it; labels are for display only:

Label nyLabel = new Label ("I ama | abel");

Text Fields

To create an instance of class TextField, you can use one of a few different con-
structors. One of these specifies what text the text field should contain initially.
(The purpose of text fields is for users to type their own text into these fields.)
When you create a text field, you can also specify the width of the text field by

223

CREATING A USER INTERFACE

224

indicating its number of columns. This is a rough indication of how many charac-
ters the field can contain.

For example, to create a text field that initially contains the character 0 (zero)
and can hold 8 characters (approximately), you can write

TextField tf = new TextField("0", 8);

Choices

Choices provide a selection list for the user to pick one of a few different strings.
Creating the choice itself is easy enough:

Choi ce ¢ = new Choice();

To fill up the choice with the strings the user can select, you can use the
choice’s addI t en() method, like this:

c.addlten("First Choice");
c. addl ten(" Second Choi ce");

and so on, for however many choices you have.

Checkboxes

To create a checkbox, you can use one of two common constructors. The first cre-
ates a checkbox that is not related to any other checkbox:

Checkbox ¢ = new Checkbox("first choice");

This would create a new checkbox that was initially unselected. (You can always
select it from your own code by invoking its set St at e() method and passing it
trueorfal se)

If you created another checkbox, like this,

Checkbox c2 = new Checkbox("second choice");

and displayed both checkboxes, the user would be able to turn them on or off (se-
lect them and unselect them) independently of each other. If you wanted them to
be tied together so that only one of these checkboxes could be selected at one time,
you could create an exclusive-choice checkbox. (Exclusive choice checkboxes are
often called Radio Buttons.)

JAVA’'S USER INTERFACE ELEMENTS

The way you do that is by creating an instance of class CheckboxGroup and
assigning the mutually exclusive checkboxes to the same checkbox group. You as-
sign the checkbox group when you create the checkbox, and you also indicate
whether the checkbox should be on or off (by also passing the constructor the
value t rueor f al se). For example, you can write

CheckboxGroup group = new CheckboxG oup();
Checkbox ¢l = new Checkbox("first choice", group, true);
Checkbox c2 = new Checkbox("second choi ce", group, false);

This would create two checkboxes, and the checkbox group would make sure that
only one of these was selected at a time. At first, the checkbox in c1 would be on,
and the checkbox in ¢2 would be off (notice the t r ueand f al sevalues passed to
the constructor that indicate this).

Making the Components Appear

To make a user interface component part of the applet’s display, you can invoke
the applet’s add() method and pass it the component you want to add to the dis-
play. (We'll look at what's going on with the add() method in just a moment.)
Listing 11.1 shows the i ni t () method for the applet we displayed in Figure 11.1.
Later in this chapter, we’ll show you how to detect when the user has interacted
with these components.

Listing 11.1 Creating user interface components.

i mport java.aw.?*;

public class U Appl et extends java. applet. Applet {

But t on butt on;
Choi ce choi ce;
TextField text Fi el d;

[** Create a user interface. */
public void init() {

Checkbox checkbox;
CheckboxG oup checkboxG oup;
Label | abel ;

225

CREATING A USER INTERFACE

226

/'l create a choice |ist
choi ce = new Choice();
choi ce. addl t en{" Appl ") ;
choi ce. addl t en{ " Banana") ;
choi ce. addl ten(" Cherry");
add(choi ce);

/] create a text field
textField = new TextFiel d(10); // 10 colums wi de
add(textFiel d);

/] create a button
button = new Button("Cick nme");
add(button);

/'l create a | abel
| abel = new Label ("I ama | abel");

add(| abel);

/!l create 3 exclusive-choi ce checkboxes
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("Yes", checkboxG oup, false);

add(checkbox) ;

checkbox = new Checkbox("No", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("Maybe", checkboxG oup, true);
add(checkbox) ;

Arranging User Interface Elements

So far, we’ve created components just fine, and we’ve even added them to our ap-
plet’s display so that they appeared on the screen. We used the add() method to
make them appear, but we haven’t investigated what the add() method is doing;
we just trusted this method to arrange our user interface components for us and
make sure they were displayed. It's time to look at what's really going on here and
what you can do to influence the arrangement of your user interface elements.

ARRANGING USER INTERFACE ELEMENTS

Placing Components in Containers

Your components can’t just be displayed on their own, independently of the rest
of your user interface. Instead, they need to be contained in something. What you
need to do is place your components into a subclass of Java’s Container class. This
idea is shown in Figure 11.3.

container

| |

| |
component

| component |

| |

| |

component

Figure 11.3 Component objects placed within an instance of class Container or a
subclass of class Container.

As it happens, the Applet class itself is a subclass of class Container! This
means that your Applet class can contain user interface components. Very conve-
nient! This is what happened when we invoked the add() method for the applet
in the example in the previous section: The component we passed along as a pa-
rameter for add() was added to the applet; the applet became the component’s
container. This idea is shown in Figure 11.4.

| |
| |
component
| component |
| |
| component |

Figure 11.4 Component objects contained within the applet since it is an instance of a
subclass of class Container.

227

CREATING A USER INTERFACE

228

Arranging Elements with Layouts

One thing we haven't covered yet is how these components know where they
should appear within a container. When you use add() to add a user interface
component to a container, where does the component go? That is, how does the
container know how to position the component? Does the container position ob-
jects left to right? Top to bottom? Do all the components end up on top of one an-
other in the middle of the container?

The answer is that it depends. What it depends on is the layout manager as-
signed to the container in which you're placing the components. Java defines five
different types of layout managers, and each one does something a little bit differ-
ent. We'll list the five here, discuss two of them in more detail, and then use these
two in the sample programs at the end of this chapter.

The layout managers supplied by Java are

* FlowLayout, which arranges components left to right until it must move to
the next line to fit a new component into the display. At the end, each line will
be centered.

e GridLayout, which arranges components in a rectangular grid the size that
you specify.

¢ BorderLayout, which arranges components on either the left, right, top, bot-
tom, or center. BorderLayout uses directions to indicate where to place a com-
ponent. These directions are “East” for left, “West” for right, “North” for top,
and “South” for bottom. “Center” places the component in the center of the
container.

e CardLayout, which presents different screen arrangements (or cards, as in
cards in a deck) to the user.

¢ GridBagLayout, which allows you to create sophisticated arrangements of ob-
jects on the screen. These arrangements are grid like, but almost more in the
sense of a game of Tetris than in a strict grid because user interface compo-
nents can take up more than one grid.

Let’s look at the first two types of layout managers in this list in more detail.

FlowLayout

FlowLayout is perhaps the easiest layout manager to use. This is the default lay-
out manager for applets. FlowLayout starts placing components at the top left of
your container (if you're adding components to your applet, then FlowLayout

ARRANGING USER INTERFACE ELEMENTS

contalner

component 1| | component 2| | component 3

Figure 11.5 First row of components arranged by FlowLayout in a container left to right,
starting along the top.

container

| component 1] | component 2| [component 3

Figure 11.6 New component added to the second row by FlowLayout, at which point
everything on the first row is centered.

starts at the top left of your applet). As you add more components to this con-
tainer, FlowLayout will continue adding components along the top, moving left
to right. This layout is shown in Figure 11.5.

When the next component to be added no longer fits on the current row,
FlowLayout begins a new row. It then centers everything on the first row. This
layout is shown in Figure 11.6.

New components are now added to the second row, moving left to right. New
components will be added on this second row until they no longer fit on the sec-
ond row, at which time FlowLayout begins a third row. Again, everything on the
second row is centered. When the container is finally displayed, all of the rows are
centered. Figure 11.7. shows what the final display would look like for three rows
of objects.

In the applet we created that displayed the choice, text field, button, label, and
three checkboxes, these components were added to the applet using the applet’s
default layout manager—FlowLayout. If you resize the applet, FlowLayout will

229

CREATING A USER INTERFACE

230

container

| component 1] | component 2|| component 3|

| component 4] | component 5 |

Figure 11.7 A container with three rows of components that used FlowLayout to arrange
them.

rearrange the components according to the rules we just covered. For example,
Figure 11.8 shows what the applet would look like if we decreased the width and
increased its height.

The reason that FlowLayout is easy to use is that you don’t really have to
worry about it. You just keep adding your components to the container, and Flow-
Layout takes care of arranging them.

=[@Z Applet Viewer: U

| épple |

| |
| arna label

(3 ¥es () Mo

'E' Maybe

applet started

[

Figure 11.8 The resized applet of Figure 11.1 with its components rearranged by
FlowLayout.

ARRANGING USER INTERFACE ELEMENTS

GridLayout

GridLayout can help you arrange your user interface elements in a precise grid.
When you create GridLayout, you can indicate the number of rows and columns
you want the grid to have. Here’s an example of creating a grid layout object that
would arrange objects in a grid that is 5 rows by 3 columns:

GridLayout |ayout = new GridLayout (5, 3);

To attach GridLayout to the container, you need to invoke that container’s
set Layout ()method and pass this method the new layout manager. (You would
have to use the set Layout ()method for any new layout manager you assign to a
container. For an applet, its default layout manager is FlowLayout, so we didn’t
have to create our own.) For example, here’s how you can assign a new grid lay-
out object in a variable called | ayout to the applet inside the applet’s i nit ()
method:

set Layout (| ayout);

When you add new components to a container using GridLayout, the compo-
nents are arranged row by row, starting in row 1, column 1, then row 1, column 2,
and so on, through the number of columns. Then, GridLayout starts in the next
row at column 1, and so on, until all of the columns and rows are filled. This lay-
out progression is shown in Figure 11.9.

The sample programs provide examples of using FlowLayout (which is the
default for applets) and GridLayout (which we’ll create especially to arrange a
user interface in a precise grid within an applet).

Figure 11.9 GridLayout progressing left to right, row by row so that all the components
end up occupying one cell in the grid.

231

CREATING A USER INTERFACE

232

Building User Interface Hierarchies

Applets make great containers. For the applets in this book, we’ll always use an
applet as our container. However, one of the flexible things about containers is
that containers can contain other containers. This allows you to build up fairly
complex user interfaces. This section will touch on how you can go about doing
this and what classes Java provides to help you.

While you can often just use a layout manager to arrange your components in
your applet, sometimes your user interface will be too complex to arrange inside
only one container. For example, imagine the front panel of a stereo. If stereo de-
signers just added controls to the stereo as they thought of them, the front panel
of the stereo might be a confusing jumble of options—something like what’s
shown in Figure 11.10.

Sop | 10" Jhi | play
treble |0® hi
- base

1= 1o gect T

volume pause

Figure 11.10 A confusing arrangement of controls on a stereo.

There are many controls here, but if you group them together, they’re not so
confusing. You might group together dials for the volume, treble, and base. You
might group together buttons to control your compact disc player. Each of the dif-
ferent sets of controls might be organized into separate collections, as shown in
Figure 11.11.

1@10 Io@hi lo hi

volume treble base

e > 11 =1

gject play pause stop

Figure 11.11 An organized arrangement of controls on a stereo.

applet
r——— - - - - - — - — — — a1
I container |
| e) |
| | [component| |component| | |
Lo - - - — . -
| _ |
| container |
r—— - - - - - — — — — A
| |
| |

Figure 11.12 An organized arrangement of user interface components.

User interface controls in your applet are not much different from the controls
on a stereo. If you have a complex arrangement of items, you might decide to cre-
ate containers to hold each group of items and then add the different containers to
your applet, as shown in Figure 11.12. One way to do this, for example, is to use
GridLayout to arrange your containers within your applet in a grid that is 2 rows
by 1 column.

To help you arrange items, Java provides some additional subclasses of class
Container (in addition to the Applet class). These include

e Frames, which can display a title and a menu bar.

* Panels, which act as generic containers.

Check out Appendix G for where to look for more examples of using these
containers in your own applets.

Events

Remember, in Chapter 4, when you played around with the SimpleDraw applet?
In SimpleDraw, you clicked on the applet, and a new square or circle appeared,
drawn in the color that you selected from a choice list. Every time you clicked the
mouse on the applet, you generated an event. In Java, an event represents some
action taken by the user. Every time the user interacts with your applet, the user
generates an event. For example, if the user clicks the mouse, this generates an
event. If the user types in characters, this generates an event. Java tells your pro-
gram about events generated by the user, and that allows your program to take
the appropriate action to react to the user.

EVENTS

233

CREATING A USER INTERFACE

234

How Java Informs You of Events

How do these events reach you? If the user is constantly clicking and creating
new shapes, how do you hear about it? Thinking over what you’ve learned about
how Java works, you might be able to figure it out. For example, when your ap-
plet needs to know about a new phase in life that it’s entering, the appropriate life
cycle method is invoked. Similarly, when your applet needs to know about a new
event, the appropriate event method is invoked.

How Events Are Propagated

Java starts by informing the particular component that the user interacted with
that an event occurred. Figure 11.13 shows a possible arrangement of objects on
the screen and which component is initially told about the event.

If the button handles this event, then that’s the end of the event. If the button
does not handle the event, Java sees whether some other object wants it. The object
that Java informs next is the user interface container in which the button is placed.
In Figure 11.13, we’ve placed the button inside a panel. So, next, Java informs the
panel of the event that happened to the button. This is shown in Figure 11.14.

If the panel handles this event, then that’s the end of the event. If the panel
does not handle the event, the event goes to the panel’s container, which in the di-
agrammed example is the applet. This is shown in Figure 11.15.

At this point, either the applet handles the event or it doesn’t. There’s no-
where else for the event to go if the applet does not handle the event here. The
event will just “disappear” if no one ever handles it.

One useful consequence of this event propagation is that you don’t have to go
around subclassing every user interface component there is and writing your own
methods to make it do what you want. Instead, you can subclass a container that
groups together many other objects, or you can simply use your applet that

L User clicks the button

~ _ 2. Javainformsthe

— button of this event

panel

applet

Figure 11.13 First step in event propagation: Java informs the component that the user
interacted with that there was an event.

-

oo [

- T

panel

applet

Figure 11.14 Next step in event propagation: If the button does not handle the event,
Java tells its container—in this case, a panel—about the event that happened to the

button.

-~

ez

- T

panel

applet & T

Figure 11.15 Final step in event propagation: If the panel does not handle the event,
Java tells its container—in this case, the applet—about the event that happened to the

button.

contains everything and supply a method that will react to an event that occurs to
one of the components contained within your container or applet. Your method
can detect where the event occurred and to what component and can take the ap-
propriate action based on what the user clicked or entered with the keyboard.

_ 1. User clicks the button

_ 2. Javainformsthe
button of this event

- 3. Javainformsthe
panel of this event

1 User clicks the button

_ 2. Javainformsthe
button of this event

- 3. Javainformsthe
panel of this event

-4, Javainforms the
applet of this event

You'll see examples of this in the sample programs coming up.

Event Methods

There are a variety of event methods that are invoked for different situations—in
particular, for mouse clicks, mouse movements, and keystrokes. These are the
methods you're likely to deal with the most, and we'll get to these in a moment.
Before we look at them, however, you need to know about a method called

handl eevent ().

EVENTS

235

CREATING A USER INTERFACE

236

The method handl eEvent ()is a method that is always invoked for every type
of event. This method takes an object that is created by Java. This object encodes
the information for the event and is an instance of class (drum roll, please...)
Event! The event object you receive identifies the user interface component in
which the event occurred as well as what type of event actually occurred. The two
instance variables that you might deal with when using an event object are

e tar get, which contains the user interface component that the user interacted
with to trigger this event.

¢ i d, which contains an identifier for this event.

The i d variable can be one of a few different values, and Java supplies a
whole bunch of these as class variables in the Event class. So, for example, you
can check to see whether the event’s i d is equal to Event . MOUSE_DOMthat is, if
the user clicked the mouse) or Event . SCROLL_PAGE_UBvhich will be the case if
the user scrolled up by a page) or Event . KEY_ACTI Oif the user pressed a key on
the keyboard). There are many more values for the wide variety of events that can
occur; these are documented with the Event class.

If you choose to supply a handl eEvent ()method, you can use the event ob-
ject that is passed to you as a parameter to identify what the user did and take the
appropriate action. However, handl eEvent ()is not necessarily the most conve-
nient method to override because handl eEvent ()is invoked for every little thing
that happens. If all you're interested in is mouse clicks, it would be great to over-
ride a method that deals only with mouse clicks. In fact, Java makes this possible.
The default behavior for handl eEvent ()is to invoke other methods, depending
on the type of event the user generated. These other methods (and their parame-
ters) are

* nouseEnter (Event e, int x, int ,yhichindicates if the mouse enters
the boundaries of a component.

e nouseExit (Event e, int x, int ,which indicates if the mouse leaves
the boundaries of a component.

e mouseMove (Event e, int x, int ,yhich isinvoked every time the
mouse moves across the screen.

e nouseDrag (Event e, int x, int ,whichisinvoked when the mouse
moves across the screen while the mouse button is being held down.

* nouseUp (Event e, int x, int yyhichsignals thatthe mouse button has
been released.

e nouseDown (Event e, int x, int yhich indicates that the mouse but-
ton has been pressed.

e keyDown (Event e, int keyyhich isinvoked whenever the user types in
a new character using the keyboard (the parameter key indicates which key
the user typed).

e action(Event e, Object obj)which isinvoked for every action that oc-
curs, such as a mouse click or the user pressing enter (but not for every event,
such as the user typing a keyboard character).

The x and y parameters indicate where the user clicked if the event was gen-
erated using the mouse. So, if all you care about are mouse clicks, you might de-
cide not to override handl eEvent ()and filter the events that rush in like a tidal
wave, but instead pan in the stream of special events, looking for the event in
which you're interested. In other words, if you're interested in mouse clicks, you
have two choices:

1. You can override handl eEvent ()and check every event object’s i d variable
for a match to Event . MOUSE_UP

2. You can override nouseUp().

The same event object is passed along to the special event methods, so you
can still check the target of the event to make sure the event occurred in a compo-
nent that you want to handle.

Earlier in this chapter, we arranged a user interface containing a choice list, a
text field, a button, a label, and three checkboxes. All we’ve shown so far is the
i ni t () method that created these components. Now, let’s look at what we might
do if we wanted to detect which components the user selected.

We can do this by overriding the act i on() method for our applet. Since we
saved the text field, button, and choice objects in instance variables, we can com-
pare these directly to the event’s t ar get variable to see whether one of these is the
component the user interacted with. Since we did not save the individual check-
boxes (though we could have done so easily enough), we will check instead to see
whether the target object is in fact an instance of a checkbox. Here’s the code:

public bool ean action(Event e, (bject arg) {

if (e.target == textField)
Systemout.println("User entered text into the text field");

else if (e.target == button)
Systemout.println("User clicked the button");

EVENTS

237

CREATING A USER INTERFACE

238

else if (e.target == choice)
System out.println("User selected a new choice");

else if (e.target instanceof Checkbox)
Systemout.println("User clicked a checkbox");

el se
System out. println("Unrecogni zed event");

return super.action(e, arg);

At the end, we call the superclass’s implementation of act i on()and return
what the superclass feels is appropriate for this action. We’ll look at other exam-
ples of handling events in the sample programs.

One last thing. All of the event methods return a bool eanvalue. This return
value lets Java know whether the method handled the event or not. If you do han-
dle the event yourself, you should return t r ue That stops the event from propa-
gating up to the next container. If you don’t handle the event, you should return
f al seso that Java can see whether any other object in the hierarchy of containers
above the event’s original target is interested in what the user did. You can also in-
voke your superclass’s method and return the same value that your superclass re-
turns.

Sample Programs

We'll look at a few different sample programs in this section, starting simply at
first before building up more sophisticated user interfaces. We'll start with an ap-
plet that displays a message inside the applet itself.

PaintHello.u

Open 11.02 - paint hel | 0in the Learn Java Projects folder. Double-click the
project file Pai nt Hel | 0. [to open it, then make the project by selecting Make form
the Project menu. Drop the file Pai nt Hel | 0. ht monto the Metrowerks Java icon.
When the applet appears, it will actually do something within the applet window
itself! You won't have to look to the Java Output window to see the results of run-
ning this applet. What it does is display a greeting inside the applet. Figure 11.16
shows what the applet looks like.

SAMPLE PROGRAMS

== Applet Viewer: PaintHello.class

Hello, applet!

applet staried

=

Figure 11.16 The PaintHello applet displaying a greeting message inside the applet
itself.

A friendly little applet, isn’t it? Let’s look at the source code.

Stepping Through the Source Code

Open Pai nt Hel | 0. j avaYou'll see there are only a few lines to this applet. The
applet doesn’t override any applet life cycle methods, but it does define what
happens when the applet paints itself.

This file starts by importing the Graphics class, which is in Java’s awt library:

i mport java.awt . G aphics;
We need this class because an instance of this class is passed to the pai nt ()
method as a parameter. We'll use an instance method defined by Graphics to
write “Hello, applet!” to the applet’s display.

The applet is defined in the usual way, by extending Java’s Applet class:
public class PaintHell o extends java. appl et. Appl et {

We then provide the behavior for the pai nt () method. This method is in-
voked for you by Java whenever your applet’s display needs to be refreshed. Java

passes an instance of the Graphics class to pai nt ():

public void paint(Gaphics g) {

239

CREATING A USER INTERFACE

240

oo

P increasing x

< X

Iext to display

™ — |e&ft, bottom for text

increasing y

Figure 11.17 Positioning text using the horizontal and vertical positions in
drawstring().

We use an instance method defined by the Graphics class to display the text in
the applet. This method, drawSt ri ng() takes three parameters. The first is the
string to display; the second is the horizontal position (moving from the left edge
of the applet the specified number of pixels) to start writing the text; the third is
the vertical position (moving from the top edge of the applet the specified number
of pixels) to place the text. The horizontal and vertical positions indicate the bot-
tom left of the text, as shown in Figure 11.17.

Here’s the code we'll use in PaintHello:

g.drawstring("Hello, applet!"”, 80, 50);

That's all there is to it! dr awSt r i ng()“draws” the string into the applet.
For our next example, we'll look at how to paint a shape into the applet.

SimpleDraw.y, Version 1

Open 11. 03 - paint circl ein the Learn Java Projects folder. Open Si npl e-
Draw. y and select Make from the Project menu. Run this applet as you're
used to, by dropping the file Si npl eDr aw. ht nfonto the Metrowerks Java icon.
When the applet runs, you'll see a red circle appear inside the applet. Figure 11.18
shows what this looks like (in gray-scale, of course, though the circle really is red
on the screen).

That's all there is here. This applet is almost as simple as the applet that
painted the string “Hello, applet!” in the previous example. Let’s take a look at
the source code.

SAMPLE PROGRAMS

=[0= Applet Viewer: SimpleDraw.class

applet started

=

Figure 11.18 Ouir first version of SimpleDraw showing a red circle painted in the center
of the applet.

Stepping Through the Source Code

Open Si npl eDr aw. j avaThis is your first exposure to the source code for the Sim-
pleDraw applet you played with in Chapter 4. Over this chapter and the next,
we’ll build up this applet until it has all the functionality you saw in Chapter 4.

Like the PaintHello applet, this applet also only overrides the pai nt ()
method. This applet needs two statements to display the red circle. First, it must
set the current drawing color to red; then, it must draw the circle.

This file starts by importing the Applet class and the classes in the awt pack-
age:

i mport java. appl et. Appl et;
i mport java.aw.*;

We actually need only two classes in the awt package—Color and Graphics—but
it's common to make the entire awt package available to an applet, so we'll start
adopting this technique for many of the sample applications.

Then, we define the Applet subclass, which we’ll call SimpleDraw:
public class SinpleDraw extends Applet {

241

CREATING A USER INTERFACE
Now, to override the pai nt () method. You already know how to do this:
public void paint(Gaphics g) {

The pai nt () method will do two things. First, it will set the current drawing
color. We'll use an instance method defined for graphics objects called set -
Col or () to do this. We'll supply one of Java’s predefined colors that it makes
available as a class variable in the Color class. This color will be red, and it’s kept
in the class variable named r ed that is in the Color class:

g. set Col or (Col or.red);

And finally, we’ll draw the circle. Java defines a method for graphics objects
called fill Oval () This method takes four parameters. The first two are the top
left and top right of the oval; the second two are the width and height of the oval,
as shown in Figure 11.19. The pattern forfi | | Oval ()is:
filloval (Ieft, right, width, height):

Here’s the code we’ll use in SimpleDraw:

g.fillOval (115, 55, 40, 40);

By using the same value for the width and height of the oval, we’ve drawn a
circle. The placement of the circle (at left = 115 and top = 55) was chosen to center

;zg P increasing X
left,top . _ _
j A
| height
increasingy

Figure 11.19 Drawing an oval using the four paremeters infil | Oval ().

242

SAMPLE PROGRAMS

the circle based on the dimensions of the applet supplied in the HTML file and
also taking into account the diameter of the circle.

SimpleDraw.y, Version 2

Now it’s time to react to user input events, such as mouse clicks. Enough of these
passive applets! In this version, we’ll move the painted circle to wherever the user
clicks.

Open 11. 04- circl eat clickin Learn Java Projects. Open Si npl eDr aw. p
and make the project. Drop Si npl eDr aw. ht monto the Metrowerks Java icon.
Now, start clicking away on the applet. The red circle doesn’t just stay in one
place, as it did in the previous applet. This time, it hops over to draw where you
clicked! Figure 11.20 shows where the circle appears when you click near the top
right of the applet.

This version of SimpleDraw might seem very similar to the previous one, but
we’ve changed things around quite a bit. Let’s look at what's new.

Stepping Through the Source Code

Open Si npl eDr aw. j avaThere are two classes defined here: the applet and a class
called Circle. The applet defines three methods. Each of these methods overrides a

=[E= Applet Viewer: SimpleDraw.class ==

applet staried

[

Figure 11.20 Our second version of SimpleDraw showing a red circle painted near the
top right of the applet (or wherever the user clicks).

243

CREATING A USER INTERFACE

244

method defined by the Applet class itself. The first method, i ni t (), creates a cir-
cle to start with. The method nouseUp() detects where the user has clicked. The
method pai nt () redraws the circle. For the Circle class, we defined two methods.
The first draws the circle. The second initializes new circles.

The file starts by importing the Applet class as well as the classes in the awt
package:

i mport java. appl et. Appl et;
i mport java.aw.*;

Again, we need the Graphics and Color classes. We also need a class called Event
that is defined in awt.

The SimpleDraw applet defines an instance variable to keep track of the cur-
rent circle:

public class SinpleDraw extends Applet {
Crcle C;

In the i ni t () method, we create a circle, assign it to the applet’s instance
variable named c, and initialize the circle’s position to 50, 50 (that is, 50 pixels
from the left and 50 pixels from the top of the applet). We have written the Circle
class so that when the circle redraws, it will offset itself so that 50, 50 becomes the
center of the circle, rather than the top left. To initialize the circle’s position, we
use an instance method supplied by the circle called i ni ti al i ze()(we’ll look at
initialize()inamoment):

public void init() {
c = new Grcle();
c.initialize(50, 50);
}

Whenever the user clicks the applet with the mouse, Java will invoke a num-
ber of applet methods to tell the applet that an event occurred. One of these meth-
ods is nmouseUp(), and we can override this method to find out where the user
clicked since this information is passed in as parameters. We’ll create a new circle,
just as in i ni t (). This time, however, we won’t hard-code the circle’s position to
50, 50. We'll use the x and y values of the mouse click to determine this position:

public bool ean nouseUp(Event e, int x, int y) {
c = new Crcle();
c.initialize(x, y);

SAMPLE PROGRAMS

Now that we’ve defined a new circle, we have to tell the applet to redraw it-
self. We can do this by invokingr epai nt ()

repaint();

Since mouseUp() returns a bool eanvalue, we have to return true or false.
The return value indicates whether this event has been handled or not, and in-
deed we have handled it. So, we can return true:

return true;

}

The pai nt () method asks the circle to redraw itself. We pass the graphics ob-
ject to the circle to help it get the job done:

public void paint(Gaphics g) {
c.draw(g);
}

The next step is to look at the Circle class. From the applet, we can see the Cir-
cle class defines two instance methods: i ni ti al i ze()and draw(). Let’s take a
look.

The Circle class starts out by defining three instance variables. These will be
used to keep track of the circle’s color and center:

class Circle {
Col or color;
int x;
int vy;

The dr aw() method is very similar to what you saw in the previous version of
SimpleDraw in that applet’s pai nt () method. dr aw() is our own custom method.
It takes one parameter, the graphics object provided to the applet by Java, and
uses this graphics object to set the current color and draw the circle. Notice that
we offset the circle by half the circle’s diameter (that is, by its radius) so that the x
and y values become the center of the circle, rather than the top left of the circle:

voi d drawm Graphics g) {
g.setCol or(this.color);
g. fillOval (this.x - 20, this.y - 20, 40, 40);

245

CREATING A USER INTERFACE

246

The i ni ti al i ze()method sets the instance variables for the circle. The cir-
cle’s color is always set to red, and the x and y values are set to the position of the
user’s mouse click (which is passed in to thei ni ti al i ze()method as the x and y
parameters):

void initialize(int x, int y) {
color = Color.red;
this.x = x;
this.y =vy;

SimpleDraw.p, Version 3

So far, the SimpleDraw applet is doing a lot—namely, it’s painting and respond-
ing to user input events. Now, let’s put in a couple of user interface components
to really start to give the user some control over the proceedings.

Open 11. 05- si npl edr awin Learn Java Projects. Open Si npl eDr aw. pand
make the project. Drop Si npl eDr aw. ht mMonto the Metrowerks Java icon. You'll
notice the applet that appears now has two choice lists. The first provides the
shape choices of “Circle” and “Square.” The second offers the color choices of
“Red,” “Green,” and “Blue.”

At first, the applet works just like in the previous version. The default shape is
circle, and the default color is red. The applet displays a red circle wherever the
user clicks. This is shown in Figure 11.21.

However, in this version, the user is not limited to red circles. By using the
choice lists, the user can choose to draw a green circle, or a blue square, or any
combination of shape and color. Drawing a blue square is shown in Figure 11.22.

Let’s look at the source code.

Stepping Through the Source Code

Let’s look at the classes that define the shapes first and then backtrack to the ap-
plet. The Circle and Square classes are organized similarly to the hierarchy we de-
veloped in the sample programs section in Chapter 10. You might recall that we
created an abstract Shape class to act as the superclass to a Circle and a Square
class. We’ll do the same thing here.

The Shape class defines common variables to the Circle and Square classes.
These include the shape’s radius, color, and x and y positions. Since the radius
will not change, it can be declared to be a class variable that is f i nal:

SAMPLE PROGRAMS

= Hpplet Diewer: Eimpleﬁraw.class

|_Circle w] Red |

Figure 11.21 Our third version of SimpleDraw showing a red circle painted wherever the
user clicks.

= Applet Diewer: SimpleDraw.class

Figure 11.22 Our third version of SimpleDraw showing a blue square after the user
clicks in the applet to draw this shape.

abstract class Shape { 247

CREATING A USER INTERFACE

248

static public final int shapeRadius = 20;

Col or col or;
i nt X;
i nt y;

The Shape class also defines an abst r act method called dr aw(). This means
that the subclasses of Shape—Circle and Square—will have to implement this
method. By defining this method here, we enable the dr aw() method to be in-
voked using variables declared as instances of class Shape, which we’ll want to do
in the applet:

abstract void draw(G aphics g);

Declaring this abst r act method meant we had to declare the class as ab-
stract as well. This prevents us from instantiating the Shape class directly; in-
stead, we’ll end up instantiating its subclasses, Circle and Square.

The definitions for the Circle and Square classes can be fairly simple, and
you've seen similar code already. These classes define only one method, a new
method called dr aw(). The Circle and Square classes set the current color to what
they’ve stored in their instance variables, and then draw the appropriate shape,
centered at the x and y positions in their instance variables:

class Circle extends Shape {
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}
}

cl ass Square extends Shape{
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadi us * 2);
}
}

SAMPLE PROGRAMS

The file itself starts out in the usual way, by importing the Applet class and
awt classes:

i nport java. appl et. Appl et ;
i mport java.aw.*;

As before, the applet overrides three methods: init(), paint(), and
mouseUp(), and we’ll look at each of these methods in turn.

The applet starts by declaring three instance variables. The first enables the
applet to keep track of the current shape that the user has drawn; the next two
keep track of the choice components that contain the shape and color choices
(we’ll create these choices in the i ni t () method):

public class SinpleDraw extends Applet {
Shape current Shape = nul | ;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

The variable current Shapeis set to nul | initially. This lets the pai nt ()
method know later on not to try to draw a shape until the user has actually de-
fined one.

User interface components are often created in the i ni t () method. We’ll use
this approach to create the choices for the shape and color. Creating choice com-
ponents is fairly straightforward. There is a simple, three-step process:

1. Create a new choice object.

2. Use the method addl t en() to add a string to the choice representing one of
the choices.

3. Add the choice object to the container where it will appear (in this case, the
container is the applet).

Here’s the i ni t () method and the code to create the choices:
public void init() {

shapeChoi ce = new Choi ce();

shapeChoi ce. addl tem("Circle");

shapeChoi ce. addl t em(" Square") ;
add(shapeChoi ce);

249

CREATING A USER INTERFACE

250

col or Choi ce = new Choi ce();
col or Choi ce. addl tem("Red") ;
col or Choi ce. addl ten(" G een");
col or Choi ce. addl ten(" Bl ue");
add(col or Choi ce) ;

}

The default layout manager for the applet is FlowLayout. This is fine for what
we want. With the applet sized as it is according to the width in the HTML file,
the two choices fit easily in the first row along the top of the applet.

The pai nt () method doesn’t do any drawing itself but delegates that task to
the shape. If there is a current shape (that is, if the instance variable cur r ent Shape
is not equal to nul), then the pai nt () method invokes that shape’s dr aw()
method. We'll pass the dr aw() method the graphics object so that it can set the
current color and draw the appropriate shape (a circle or square, depending on
the object):

public void paint(Gaphics g) {
if (currentShape != null)
current Shape. draw(g) ;

}

All that remains is to handle user input events. Again, all we have to do is
override mouseUp(). Here’s our approach. When Java tells us the user has just
clicked the mouse, we'll find out the current choice in the shape and color choice
components. Then, we’ll find out the color to use, create the appropriate shape,
and initialize the new shape. Here we go:

public bool ean nouseUp(Event e, int x, int y) {
Col or color;
String shapeString = shapeChoi ce. get Sel ectedlten();
String colorString = col or Choi ce. get Sel ectedltem();

We'll use the variable col or to hold the color in which to draw the new shape.
By using the method get Sel ect edl t en{,)we’ve retrieved the string representing
the user’s current choices as displayed in each of the choice components.

Now, let’s determine the color in which to draw this new shape. We need to
obtain the appropriate color object based on the string we retrieved from the
choice object. What we need to do is test each string, see whether it is one of the
three colors, and, when we’ve identified the color represented in the string, assign
the variable col or to the matching color.

SAMPLE PROGRAMS

if (colorString.equal s("Red"))
col or = Col or.red;

else if (colorString.equal s("Geen"))
color = Col or. green;

el se
col or = Col or. bl ue;

Notice at the end we just assume the color is blue since it wasn’t red or green.

Then, we do a similar thing with the shape. If the string in the shape choice is
“Circle,” we create a new circle. Otherwise, the string must be “Square,” so we
create a new square:

if (shapeString.equals("Crcle"))
current Shape = new Gircle();
el se
current Shape = new Square();

Notice that we're creating a Circle or Square instance and assigning it to an in-
stance variable defined to hold a Shape. Since circles and squares are subclasses of
shapes, this is perfectly legal. If we did not use inheritance to create a common
shape superclass, we would need to have duplicate variables and code to handle
the two different class types. With one superclass, we can combine the variable
and code into one.

Next, we initialize the values for the new shape (its color as we just deter-
mined, and the location of the mouse click as passed into this method):

cur rent Shape. col or = col or;
current Shape. x = x;
current Shape.y = vy;

All that’s left to do is issue a r epai nt () and return true, indicating we han-
dled this event:

repaint();

return true;

That's all we'll do with SimpleDraw for now. In the next chapter, you'll learn
how to keep track of all of the shapes the user created—that is, each shape made
with each click—and you’ll redraw all these shapes each time the applet repaints.

251

CREATING A USER INTERFACE

252

Payroll.u

The next applet, Payroll, shows how you can work with keyboard input. We'll
create three text fields and respond to events generated by these text fields. We
won’t do anything with the text the user entered until the next chapter, when
you’ll learn more about working with data. We'll just start the Payroll applet here,
arranging the user interface and recognizing when the user has pressed enter in a
text field.

Open 11. 06 - payrol | in Learn Java Projects. Open Payrol | . 4 make the
project. Drop Payrol | . ht ml onto the Metrowerks Java icon. The Payroll applet
will appear. Its user interface consists of 2 columns and 4 rows. The first column
on the left contains labels that identify what each row is about. The first three
rows in the second column contain text fields that allow the user to type in inte-
gers using the keyboard. There is a label in the fourth row of the second column
that is blank for now but will eventually be used to display the employee’s earned
income. This arrangement is shown in Figure 11.23.To enter text into one of these
text fields, click the text field, enter a number, and press enter. Figure 11.24 shows
what the applet looks like when the user has entered some data into it.

At the moment, all this applet does is detect the event generated by pressing
enter. When the applet detects this event, it writes a message to the Java Output
window indicating it has identified which text field the user entered text into. Fig-
ure 11.25 shows a sequence of such messages.

In the next chapter, you'll turn this applet into a fully functional database.
Let’s work our way there by checking out the source code for how these compo-
nents are arranged.

=I=—— Applet Viewer: Payroll.class ——

Employes number:
Hourly wage:
Hours worked:

Earned income:

applet started

I

Figure 11.23 The Payroll applet with its display arranged in a grid of 2 columns and 4
rows.

SAMPLE PROGRAMS

== Applet Viewer: Payroll.class
Employes number: 101
Hourly wage: 15
Hours wat ked: 45

Earned income:

applet started

Figure 11.24 The Payroll applet after the user enters some data.

Emploges number
Hour 1y wage
Hour=s worked

Figure 11.25 The messages displayed in the Java Output window when the user
presses enter in each of the fields in succession.

Stepping Through the Source Code
The applet begins by importing the Applet class and the awt package, as usual:

i nport java. appl et. Appl et;
i mport java.aw.*;

The applet defines four instance variables to identify each of the components
in the second column. These components include the three text fields and the
label that we'll use later:

public class Enpl oyeeAppl et extends Applet {
TextField textFiel dEnpl oyee;
TextField textFiel dWage;
TextField textFieldHours;
Label | abel Ear ned;

We create the user interface in the i ni t () method. Since we want an arrange-
ment of 4 rows and 2 columns, we set the layout manager for the applet to be an

253

CREATING A USER INTERFACE

254

instance of class GridLayout. We initialize this instance so that it is set to 4 rows, 2
columns:

public void init() {

/'l Arrange the user interface in a grid.
set Layout (new GridLayout(4,2)); // 4 rows, 2 colums

Now, we begin adding components to the applet. The layout manager will en-
sure that the components are arranged row by row, first filling in column 1, then
column 2, then column 1 for the next row, then column 2, and so on. For each row,
we'll create a label to identify the row. We'll put this label in the first column.
Then, we'll create a new text field, set to be 20 columns wide, and we’ll add this
text field to the applet. (The value of 20 columns wide is fairly arbitrary, but this
should be large enough to hold our values for the employee number, salary, and
hours worked.) GridLayout will complete the row by putting the text field into
the second column before moving to the next row:

/1 1st row

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dEnpl oyee) ;

/1 2nd row

add(new Label ("Hourly wage:"));

text Fi el dwage = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dWage) ;

/1 3rd row

add(new Label ("Hours worked:"));

text Fi el dHours = new TextFiel d(20); // 20 columms w de
add(t ext Fi el dHour s);

The fourth row is a little different in that we place a blank label at the end:

/1 4th row

add(new Label ("Earned incone:"));
| abel Earned = new Label ();

add(| abel Ear ned) ;

SAMPLE PROGRAMS

To detect input events, we’ll override the method called acti on(). As with
mouseUp() this method returns a bool eanvalue, indicating whether or not it han-
dled the event. It takes two parameters. The first is an object representing the
input event; the second is an object representing the action that is occurring,
which we won't use in this method.

Here’s what we’ll do. We’ll use the instance variable named t ar get in the
event object to identify whether the input event we’re handling occurred in one of
the three text fields. Since we saved the text field objects in the applet’s instance
variables, this is easy to check. If one of these text fields does match up with the
target of the input event, we’ll write a simple message to the Java Output window
to indicate we have identified the text field in which the user pressed enter:

public bool ean acti on(Event e, (Object arg) {
if (e.target == textFiel dEnpl oyee) {
System out. printl n("Enpl oyee nunber");
} else if (e.target == textFieldWge) {
System out. println("Hourly wage");
} else if (e.target == textFieldHours) {
System out. println("Hours worked");

}

To determine what value to return (true or false), we'll pass this method up to
our superclass and let the default behavior take over:

return super.action(e, arg);

Though we haven’t done so yet, we intend to make use of an object that main-
tains information for each employee. Each employee object will maintain the em-
ployee’s number, hourly wage, and hours worked. Each employee will also be

255

CREATING A USER INTERFACE

256

able to calculate its own earned income. Here’s how we’ll define the Employee
class to handle these chores:

cl ass Enpl oyee {
i nt idNunber;
i nt hourl yWage;
i nt hour sWr ked;

i nt earnedl ncone() {
return hourl yWage * hour sWr ked;

Once you learn how to work with data in Chapter 12, we’ll be able to make
this applet really come alive.

Review

This chapter showed you how to put together a user interface. You've seen how to
paint on the screen using a graphics object. You've learned what components Java
makes available to you and how to use some of the more common components to
interact with the user. You've also learned how to arrange these components into
containers and how layout managers arrange your components inside containers.

Moreover, you've learned that your applet itself is a container, which allows
you to add new components directly to your applet. The applet uses FlowLayout
as its default layout manager, though you can also change this default to another
type of layout manager if you want to.

Finally, you've learned about events, which are generated when the user in-
teracts with your applet. By detecting when the user moves the mouse or clicks a
button, you can execute your own code to make things happen. For example, you
can detect when the user clicks the mouse to create a new shape at the location of
that mouse click.

What's Next?

We're beginning to reach the limit of what we can do based on the data types con-
sidered so far. We need better ways of working with data, organizing data, and
keeping track of the objects we create. That's what the next chapter is all about.
Once you work through Chapter 12, we’ll be able to complete the SimpleDraw
and Payroll applets we started here.

Chapter 12
Working with Data

You already learned about variables in Chapter 6, and you’ve been working with
data since then in your methods and objects. You've learned about i nt variables,
which hold integers, and bool eanvariables, which hold true/false values. This
chapter will provide more details about integers and Booleans. It will also discuss
other types of data, such as floating-point numbers and characters. You'll learn
how you can turn the characters that users type with the keyboard, which are rep-
resented in Java as string objects, into numbers that you can store using an i nt
variable. This is an important type of conversion to be able to perform because
variables that expect to hold i nt values cannot hold string objects. Performing
this type of conversion also means being able to respond to error conditions,
which you'll also learn how to do here.

In addition, this chapter will introduce a number of classes supplied by Java
that you can use to help manage the data in your applets. These classes, Vector
and Hashtable, will enable us to finish the SimpleDraw and Payroll applets we
started in Chapter 11.

To kick off this chapter, let’s start with the types of data you've already seen
and discuss more details about storing integers.

Integer Data

In addition to the data type i nt, which you will use most often to store integers,
there are three other data types that also store integers. The difference between
these different data types is the size of the number that they can maintain and,
correspondingly, the amount of memory in the computer they need to store their
data. The larger the number, the more memory they need in the computer.

Data Type byte

byt edata types are integers that can range in value from -128 to 127. byt e values
take up the least amount of room in the computer (they require only 1 byte, as you
might have guessed).

257

WORKING WITH DATA

258

Detail

When dealing with only a few integer variables in your entire program, it’s not
that important to worry about whether a particular variable takes up 1 byte of
memory or a little bit more—but let’s say you're General Motors and you're using
the applet we discussed earlier to maintain payroll for your employees. If you need
to keep track of an integer value for each employee that will always fall within the
range of byt evalues (128 to 127), it might save you a great deal of memory to use
byt es instead of i nts for your hundreds of thousands of employees.

A single byte represents a very small amount of memory in modern com-
puters. For example, it’s likely that the hard drive on your Mac holds many
millions of bytes, perhaps 500 million or more (each meg of storage repre-
sents approximately 1 million bytes).

byt e variables are declared by using the keyword byt e like this:
byte nyByte;
You can use byt e variables just like the i nt variables you're already familiar

with, assigning values to them, using them in formulas, and so on:

nmyByte = 5;
nmyByte *= 2,
Systemout.println("The value of nyByte is " + nyByte);

This code snippet will display “The value of myByte is 10” in the Java Output
window.

Data Type short

short data types take up twice the memory of byt e values, though this is still not
very much in terms of your computer’s memory. To use a short value, just de-
clare it using shor t as its data type:

short myShort;

Data Type long

| ong values take up a whopping 8 bytes in your computer (which still is not that
much, relatively speaking, but it’s the largest integer size there is in Java). | ong
values are great for storing extremely large positive and negative integers, but you

FLOATING-POINT DATA

should only use them when it’s possible you'll be dealing with such a huge num-
ber. (Ani nt value can be as large as 2,147,483,647 and as small as —2,147,483,648,
and this usually works out just fine.)

Definition
If you want to know how big and how small your numbers can be for a
| ong try running the following program:

public class M nMax extends java. appl et. Appl et {
public void init() {
Systemout.printin("max long is " + Long. MAX VALUE);
Systemout.printin("mn long is " + Long. M N_VALUE) ;

}

This code uses a Java class called Long that provides behavior for | ongdata
types. This applet displays the largest and smallest values that a | ongvalue
can contain.

To use al ongvalue, just declare your variable as a | ong:

| ong nylLong;

Data Type int

Where do i nt values fit in? Variables declared as i nt take up 4 bytes. You'll al-
most always use i nt values in your own programs. These offer a great combina-
tion of holding large positive and negative numbers, as well as requiring half the
memory of | ongvalues.

Floating-Point Data

Calculations involving integer values take place much faster in a computer than
floating-point calculations. However, while integer values often get the job done,
sometimes you'll reach the limit of what an integer can offer. For example, we've
already seen some code snippets that would cause our data to be inaccurate if we
used integers. One such calculation involved finding the area for a triangle. Ear-
lier, we defined a Triangle class like this:

class Triangle {
i nt base;

259

WORKING WITH DATA

By the Way

260

i nt height;
int area() {
return (base * height) / 2;

}

If a triangle’s base was 5 and its height was 3, the ar ea() method would re-
turn 7. Clearly, this is not correct! The triangle’s area is 7.5. What we need is a way
to represent fractional values as well as integral values. What we need are float-
ing-point numbers.

The term floating-point refers to the way numbers requiring a decimal point
can maintain a varying degree of accuracy in the computer. For example, if
you divide 10 by 3, a floating-point number can be 3.3, 3.33, 3.333, and so on,
up to the level of accuracy desired and depending on the amount of storage
allocated to that floating-point number. In other words, the decimal point
“floats”. Floating-point numbers are different from fixed-point numbers
(which Java does not define). Fixed-point numbers always maintain the
same level of accuracy (for example, two places after the decimal point).
Floating-point numbers, which do not have this constraint of a fixed level of
accuracy, are therefore much more powerful and flexible.

There are two types of floating-point numbers in Java. As with integral num-
bers, floating-point numbers offer a trade-off between the size of a number they
can maintain and the amount of memory required to store that number.

Types float and double

The type of floating-point number you may end up using the most is f| oat.
f | oat values take up 4 bytes of storage, just like i nt values. However, they can
store incredibly large numbers. Up to a certain point, these numbers are ex-
tremely accurate. However, for very large numbers, f | oat values trade off accu-
racy to keep up with how big the number actually is.

For example, most numbers you'll deal with, such as 7.5 in our triangle exam-
ple, or a value like 1/8, which is .125, are handled with complete accuracy. Num-
bers that range into the number of seconds that have elapsed since the big bang,
however, are less precise, though they are accurate as far as the order of magni-
tude is concerned. For example, at 15 billion years and 5 seconds (to be exact), the
number of seconds since the beginning of the big bang is 473,040,000,000,000,005.
How would Java handle such a number? If you run this program,

FLOATING-POINT DATA

public class Bi gBang extends java.appl et. Appl et {
public void init() {
float f = (fl oat)473040000000000005. 0;
Systemout.println("el apsed seconds are " + f);

}

the Java Output window will contain the message
el apsed seconds are 4.73040e+17

which is scientific notation for 4.73040 times 10 raised to the 17th power. Or put
another wayj, it is 47,304 followed by 13 zeros. This is pretty accurate—but what
happened to the 5 at the end? Java had to drop off the 5 in order to maintain the
order of magnitude of the number. If you would like more information, check out
Dave Mark’s Learn C on the Macintosh, from Addison-Wesley.

doubl e values take up 8 bytes, and doubl e variables can store much larger
values than even a f | oat. Decimal numbers are doubl evalues by default. For ex-
ample, if you have a number that you've written as 3.14, Java assumes this num-
ber is a doubl evalue.

Conversions

Floating-point numbers are represented differently in the computer than integer
numbers. With this in mind, what do you think would happen if you tried to exe-
cute a code snippet like the following?

int nylnt;
float nyFl oat = 5;

mylnt = nyFl oat;

This code seems reasonable enough, but the Java compiler would complain about
it! This code is requesting that data stored in a variable that can maintain very large
and potentially fractional (f | oat) be assigned to a variable that stores smaller and
integral numbers (i nt). The compiler will have none of this foolishness!

There is a way to assure the compiler that everything is all right, that it should
go ahead and make the assignment, even if it results in a loss in accuracy. This is
done by casting. To cast between data types, you need to write the data type that
you’d like the value to become, in parentheses, in front of the value itself. For ex-
ample, to perform the preceding conversion from f | oat to i nt, you can write

261

WORKING WITH DATA

262

nylnt = (int)nmyFl oat;

This code tells the compiler to go ahead and make the conversion from a f | oat
value to ani nt, even if the number loses accuracy by dropping a fractional value.

You can also cast objects in addition to data types. Here’s a quick example
(you'll see lots of examples of this throughout this book, including some more
later in this chapter):

doubl e aread ACircl e(Shape s) {
if (s instanceof Grcle) {
Circle c = (Crcle)s; [/l cast a shape to a circle
return c.radius * c.radius * Math.Pl;
} else
return O;

}

This code first checks to see whether a shape that has been passed to it as a param-
eter is in fact a circle. If it is, this shape object is cast to become a circle. We can
then use this object just as we would use a circle, by accessing instance variables
and invoking methods. (This example also uses a class supplied by Java called
Math to obtain the value for pi.) The reason we must cast the object in question to
a circle is that we defined Shape as being abstract, and we must work with an in-
stance of a concrete class.

Division by Zero

Integer numbers and floating-point numbers behave very differently at times.
One such example is when dividing by zero. Generally, dividing by zero is not
something you would want to do on purpose. Arithmetically, performing an op-
eration such as “10 divided by 0” is not defined. The result of such a division is
taken to be infinity.

With integral values, if you perform a division by zero, Java will generate an
error when your program executes. This error will have the likely consequence of
displaying a nasty-looking error message and halting your program in midstride.
This is definitely not what you want to have happen! When performing division
with integers that might result in a division by zero, you should check first that
this will not occur, as with code that looks like this:

if (divisor > 0)
rati o = dividend/divisor;

This code assumes, of course, that di vi sor, di vi dend and r at i oare all declared
as i nt values and that di vi sor and di vi dendhave been initialized before this
code executes.

With floating-point values, however, dividing by zero will not cause Java to
generate an error. Instead, Java supplies a meaning to division by zero for float-
ing-point values: The result in Java for such a division is infinity. If you want to,
you can just go ahead and perform division with floating-point numbers:

rati o = dividend/divisor;

If di vi soris equal to 0, r at i owill be positive infinity if di vi dendis positive and
negative infinity if di vi dendis negative. Java defines special variables called
Fl oat. POSI TI VE_I NFI Nl T¥énd Fl oat . NEGATI VE_I NFI NI Tthat represent these
values.

Boolean Data

We covered bool eandata (true/false values) in the previous chapters. There are
just a couple of details to recap here.

You cannot convert between a number, such as ani nt or afl oat, and a bool -
ean value. This is important to know, especially if you have tried your hand at
programming in some other language such as C. In C, for example, you can as-
sign numbers to bool eanvalues. If the number is 0, the bool eanvalue will be
false. If the number is anything other than 0, the bool eanvalue will be true. In
Java, this kind of thing just isn’t possible. Instead, if you want to use a number to
determine whether a bool eanvariable should contain the value true or false, you
have to use the number in an expression that evaluates to true or false, such as

bool ean isZero = (nmylnt == 0);

In this example, the expression nyl nt == Qs evaluated first. This yields a re-
sult that is true or false, depending on the value of nyl nt. If nyl nt is equal to 0,
this expression will evaluate to true, and i sZer owill be true. If ny| nt is anything
other than 0, such as 1, this expression will evaluate to false, and i sZer owill be
false.

Also, if you declare a bool eanvariable but do not assign a value to it, its de-
fault value will be false.

BOOLEAN DATA

263

WORKING WITH DATA

264

Character Data

There’s a special data type that you can use to store characters such as 4, b, or $.
This data type is needed because characters, clearly, are not numbers. The way
you define a character variable is by using the keyword char, like this:

char nyChar;

You can assign values using single quotes (unlike double quotes, which are
used with strings). For example, to assign the character x to nmyChar, you could
write

nyChar = 'x';

Normally, you'll use string objects to store text, but sometimes it’s more con-
venient to use char variables. For example, each time the user presses a key on the
keyboard, Java generates an input event. This event supplies your applet with the
character that the user typed by passing your applet a variable declared as char.

An example of when you might use a char in your own program is when
storing a selection of choices. Let’s say you're keeping track of the size of a pizza
ordered over the Web. You want to know whether the individual ordered a small,
medium, or large. Rather than keeping track of “magic numbers” in an i nt vari-
able, where you might use 1 to represent small, 2 to represent medium, and 3 to
represent large, you could instead define a char variable and use ' S' for small,
"M for medium, and ' L' for large. Now, just glancing at the data stored in this
variable makes it clear what the user has ordered.

In case you're curious, in Java, char variables take up 2 bytes. This is the re-
quired amount of memory necessary to work with the wide range of international
characters, ranging from the Greek alphabet to Japanese kanji characters.

Objects

As you know, variables can refer to objects in addition to maintaining values such
as integers and floating-point numbers. You've already seen examples of vari-
ables that refer to objects. All you have to do to declare a variable that refers to an
object is to use the class name as the data type, such as

Triangle t1,

or

Enpl oyee jpFinch; // fromHow to Succeed in Business...

The first example would be able to maintain an object that was an instance of
class Triangle (or an instance of a subclass of class Triangle). The second example
would be able to maintain an object that was an instance of class Employee (or an
instance of a subclass of class Employee).

There is one more thing to say at this point about variables that refer to ob-
jects. You know that the default value for a number is 0, but what about the de-
fault value for an object? If you have a variable for an object that does not actually
refer to an object yet, it is set to the value nul |. This allows you to do things like
test to see whether a variable is initialized to an object or not. For example, say
you have a triangle applet containing a method that searches for a particular tri-
angle. This method might be called sear chFor Tri angl e(and might be defined
to return a triangle object, like this:

Triangl e searchForTriangl e() {
/1l Code to search for a triangle goes here.

}

What happens if sear chFor Tri angl e(doesn't find the triangle it’s search-
ing for? One option in this situation is for sear chFor Tri angl e(o return null.
This method would do so with a statement that was written like this:

return null;

The code that invoked this method might be prepared for a possible null
value and could be written as follows:

triangle nyTriangle; //initialized to null by default

nmyTriangl e = searchForTriangl e(); //assigned some val ue
if (myTriangle !'= null) {

/1 W found the triangle. Do sonething here.
}

This code shows that after searching for the triangle, we only execute the code
that uses nmyTri angl eif myTri angl ehas been assigned to the triangle we were
searching for.

OBJECTS

265

WORKING WITH DATA

266

Warning

Strings

We've been working with strings since we first started writing programs in this
book. Everything written between double quotes is a string in Java, and Java even
supplies a class whose instances manage the text inside strings. Java’s class is
called, naturally enough, String, and it is defined in the lang package.

By encoding text in the String class, you can manipulate and work with text
very easily. The String class supplies a number of methods for manipulating and
searching for text within a string and for comparing different strings to one
another.

Creating Strings

Creating a string is easy to do in Java. We've already seen examples of this in
Chapter 9 when we illustrated how to pass parameters to constructors. Here’s the
standard way to create a new string;:

String belushi = new String("Hanburger, hanburger, hanburger");

Here, the string named bel ushi would maintain the data for the characters sup-
plied in double quotes.

Strings are read-only! This means that if you do not supply text for a string
when you create it, the string will never have any text because you can’t
write to it. You can only read the text it contained when it was first created.
Therefore, you'll almost always supply text when you create a new string. If
you want to change a string after you've created it, you should use an in-
stance of class StringBuffer instead of String. The StringBuffer class is de-
scribed later in this chapter.

System.out.println() Explained

Now, you’ve reached a point in your studies of Java where you know enough to
understand one of the first Java statements you learned in this book:

Systemout.printin("Hello, world!'");
We left it as more or less a mystery as to how this statement got its message to the

Java Output window (that is, to the standard output). Let’s clear up this little
mystery and explain this line of code once and for all.

STRINGS

The primary thing you're doing in this line of code is invoking an instance
method named pri nt | n() This method takes one parameter, a string. Whenever

you write quoted text, Java creates a string object for you. So, defining a method
like this

public void println(String s) {
/1 print code goes here

}
and invoking pri nt | n()like this

println("Hello, world!'");

creates an object of class String with the text “Hello, world!” and assigns this new
string to the parameter s in the pri nt | n()method.

The println() method is defined for instances of the class PrintStream
(which is defined in Java's io package). This method displays text in the standard
output, which CodeWarrior maps to the window called Java Output. Since
printl n()is an instance method, you have to be able to get access to an instance
of this class to invoke this method. Rather than Java forcing you to create such an
instance, Java’s System class, defined in the lang package, defines such an object
as one of its class variables. The name of the class variable in the System class that
refers to an instance of class PrintStream is called out.

Now, let’s put all the pieces together. To get to a predefined instance of class
PrintStream, you can write Syst em out The variable Syst em ou then, refers to an
object (an instance of class PrintStream). To invoke the instance method called
println() that is defined for instances of class PrintStream, you write Sys-
tem out. print| n()To pass a string as a parameter, you can put the text in quotes
so that Java will create an instance of class String and assign it to the string parame-
ter in the method youre invoking. There you have it Sys-
tem. out. println("Hello, world!")nallits glory!

Formatting Strings
You've already learned that you can combine numbers with strings, as in

int scoreMets = 4;
int scorePirates = 3;

if (scoreMets > scorePirates)

String s = new String("The Mets beat the Pirates " + scoreMets
+ " to " + scorePirates);

267

WORKING WITH DATA

268

el se
String s = new String("The Pirates beat the Mets " +
scorePirates + " to " + scoreMets);

You can also use special characters to format what the string displays. For ex-
ample, how do you think you can write a quote (") in a string? If you tried to cre-
ate a string like this,

String s = new String("Adam said, "Madam |’ m Adani'");

the Java compiler would complain about a syntax error because it would have
thought that the string actually read “Adam said, ” and that everything starting
at and to the right of the letter M was a mistake. In order to tell Java to make the
quote part of the string, you can use a backslash (\) in front of the quote, like this:

String s = new String("Adam said, \"Madam |’'m Adam"");

There are also some formatting commands you can put into your strings
using a combination of a backslash and a letter. Here are two that you might find
the most useful.

To make Java start displaying text on the next line, we can use \ n (the n stands
for “new line”). For example, we can write out the colors of the rainbow as we did
earlier, but this time we can use just one pri nt | n()statement instead of seven by
using \ n, like this:

System out. printl n(
"red\ nor ange\ nyel | ow\ ngr een\ nbl ue\ ni ndi go\ nviol et");

StringBuffers

If you want to be able to modify a string, you should use an instance of class
StringBulffer. String instances are read-only; StringBuffer instances are read / write.
You can create a new StringBuffer object just as you do for String objects:
StringBuffer sb = new StringBuffer("l like Paris ");

To add text to the end of sb, you can use the method append(), as in

sb. append("in the springtinme.");

THE INTEGER AND FLOATING-POINT CLASSES

StringBuffer is not a replacement for String. That is, StringBuffer objects are
not the same as String objects, because they have the ability to write to them. This
is important because most methods use strings as parameters. If you have defined
a StringBulffer, you have to convert the StringBuffer object to a String object before
you can use it where a string is expected. The way you do this is to use the
method t oSt ri ng() like this:

String s = sh.toString();

Then, you can use the variable s wherever you need to use a string.

The Integer and Floating-Point Classes

In Java, the data types fall into two categories. There are the simple data types,
which are the integers, floating-point numbers, Boolean values, and character
data (not strings) that we covered in the first part of this chapter. Then there are
the objects, which is everything else. You'll almost always use the simple data
types of i nt and f | oat when you want to use numbers. With variables declared
asint and f | oat, you can use all the arithmetic operators to perform calculations,
compare values, and control the flow through your code.

Sometimes, however, you want your numbers to have some behavior. The
most common example is converting a number to a string object—that is, being
able to invoke a method for the number that would cause it to return a string ob-
ject representing its value. Another example is being able to tell what the largest
and smallest value is that a number can hold.

To do things like this, Java supplies classes that maintain a number and pro-
vide behavior for that number. When you make an instance of one of these
classes, you provide the number that this object will maintain. These objects are
just like all of Java’s other objects—you can’t use them in calculations or for com-
parisons, as you can do with regular numbers, but they do provide methods to
help you do things.

These classes are called Integer, Long, Float, and Double. Objects created from
these classes are great for maintaining a value and providing methods to manipu-
late that value. For example, you can create a new instance of class Integer by
writing

I nt eger nunber = new I nteger(10);
If you wanted a string representing the value in this Integer instance (say, to dis-

play the value inside a text field), you could use the instance methodt oSt ri ng()
like this:

269

WORKING WITH DATA

270

String s = number.toString();

Now, s would contain the text “10”.

These classes also define some very useful class variables and class methods.
For example, they define class variables that hold the maximum and minimum
values that these data types can store. (These variables are called MAX_VALUEand
M N_VALUE) These classes also provide methods that we’ll use in the next section
to convert a string into an instance of an Integer, a Long, a Float, or a Double.

Handling Exceptions

The subject of handling exceptions is a topic that belongs more strictly in a discus-
sion of flow control. However, you'll use exception handling most frequently
when working with data, so we’ve included this discussion where it flows most
naturally with what you’ve learned so far.

Let’s say you want to convert a string into a floating-point number. Fortu-
nately, Java provides a class that does this, and it’s easy to use. You can find the
value of a string named s that represents a floating-point number by writing

float f = Float.val ued (s). fl oatVal ue;

This code works fine as long as the string says something like “100.51” or
“—.003” or is some other valid floating-point number, but what do you think Java
does if the conversion runs into trouble? For example, what happens if the string
contains “100A” or “1.2.3”? These are not valid floating-point numbers, and
Fl oat . val ueOf ()would not be able to perform the conversion.

In situations like this, the designers of Java had an interesting problem to
solve. They could have displayed a message to the standard output when some-
thing like this occurred (in CodeWarrior, that would have made a message appear
in the Java Output window). Fl oat . val uef (Jreturns a value—in particular, an
object representing a Float instance—so what value should this method return if
there’s an error? This method could have returned null, but then what would hap-
pen when the code hit nul | . f | oat Val ue() The code would have fallen apart at
the seams!

The solution for a Java method encountering this kind of problem lies in not
handling the error at all, and instead just reporting that an error occurred. That is,
the method doesn’t display an error message or return null or any other value
that might indicate an error. What the method does do is to tell the method invok-
ing it that something went awry. It does this by throwing an exception.

HANDLING EXCEPTIONS

Throwing an Exception

The terminology “throwing an exception” is very visual, and it is a good image. If
something goes wrong deep in the bowels of Java’s own methods, Java creates an
object based on a class called Exception (or on one of Exception’s subclasses, some
of which we’ll mention soon) and throws this object back to the code that invoked
it. This is depicted in Figure 12.1.

invokes '
your code Java's code
- - something goes wrong here
~
IS - Java creates an exception object
~| _and throws it back to you

Figure 12.1 Throwing an exception.

Catching an Exception

So what do you think you have to do when Java throws you an exception? Right!
You have to catch it. There’s a keyword called cat chthat you can use for just this
purpose. Here’s the way it works:

1. First, you try to execute some code that might cause an exception to be
thrown.

2. Then, you use the cat chkeyword to catch any exceptions that Java actually
throws. If Java doesn’t throw an exception, then everything’s fine, and you
can continue along as normal. If Java does throw an exception, you need to
execute special code. This is the code that follows the cat chkeyword.

Here’s an outline of what this looks like in Java code:
try {
/1 do something here that might throw an exception

} catch (Exception e) {

/1 do something appropriate for the error that occurred

271

WORKING WITH DATA

272

For example, when performing the conversion from a string to a f | oat value,
the t ry block would contain code that performs the conversion and might cause
the exception to be thrown:

String s = new String("1.23");
float f;

try {
f = Float.val ue (s).fl oatVal ue();

Systemout.printin("f is " + f);
} catch (Exception e) {
f = (float)O.O0;

Systemout.println("W’'re past the try-catch statenments");

Here, we try to execute the conversion code. If everything goes fine with the
conversion, f would be assigned the f | oat value, and the very next line of code to
execute would write the line “f is 1.23” to the Java Output window. Following
that, the very next line of code to execute would write “We're past the try-catch
statements” to the Java Output window.

However, if Java found that s did not contain a valid floating-point number, it
would throw an exception. In that case, the statement that wrote the value of f to
the Java Output window would never execute. Instead, Java would throw an excep-
tion, and our cat chstatement would execute next. This would assign the object
that Java threw to the variable e, and we would set f to 0.0. The next line of code
to execute after setting f to 0.0 would write “We're past the try-catch statement”
to the Java Output window.

It's helpful in learning about t r y- cat chstatements to compare them to i f -
el se statements. How does the t ry- cat chjust shown compare with the follow-
ing code?

if (noError()) {
f = Float.val ue (s).fl oatVal ue();
Systemout.printin("f is " + f);
} else {
Exception e = error Type();
f = (float)O.O0;

HANDLING EXCEPTIONS

Is this the same as the try-catch Not quite. This code says that if the
method noEr r or () returns true, then execute thei f block. Otherwise, execute the
el seblock. This is very different from the t r y- cat chstatements, but in very sub-
tle ways. First, the t r y keyword is not an i f. There is no expression that is evalu-
ated to see whether we should execute the code in the t ry block. We just start
executing it. We keep on executing the statements, line by line, and if there are no
errors, we branch around the cat chblock (which is just like branching around the
el se block in the preceding code). However, if, in the course of executing the
statements in the t r y block, there is an error, we jump immediately to the cat ch
block. In the preceding code, we assigned to the variable e the type of error that
occurred, and this is similar to the cat chblock, where the error that occurred is
assigned to an object with the name e (though you can name this variable any-
thing you want to, such as x, except i onor er r or—not just e).

Types of Exceptions

Java defines lots of subclasses of the Exception class. The purpose of these differ-
ent types of exceptions is to be able to identify exactly what went wrong. For ex-
ample, if you try to use a string that is supposed to contain a number but contains
something that is not a number, Java doesn’t just throw an instance of class Excep-
tion; it throws an instance of a subclass of class Exception called NumberFormat-
Exception.

Here’s another example. If you try to create a new object but there is no more
memory in the computer, Java will throw an instance of OutOfMemoryError. Java
defines many, many types of exceptions. Since they all descend from class Excep-
tion, you can always just catch an instance of class Exception, and you'll be fine.
You can also use the specific exception type in the cat chblock, as in

catch (Qut O MenoryError error) {
/'l error-handling code

The reason for supplying these different exception subclasses is to be able to
distinguish between exceptions. Chapter 13 shows you how to do that.

Knowing When You Need to Handle
an Exception

The documentation files for Java’s classes let you know when you need to handle
an exception. Chapter 15 describes how to read the HTML documentation for
Java’s class files. You might have looked at these files already. If not, here’s a sneak
preview.

273

WORKING WITH DATA

274

+ Integer

public Integer(ftring =) throws HumberFormatException

Constucts an Integer ohject initialized to the value specified by the Sting parameter. The
radix iz assumed 1o be 10,
Parameters:
3 - the String 10 be conserted 10 an Inteser
Throws: HumberFormatException
If the Bting does not contain a parsable integer.

Figure 12.2 The documentation for one of the Integer class’s constructors.

All of Java’s classes are defined using HTML files that you can look at in a
Web browser. Figure 12.2 shows what the documentation looks like for one of the
Integer class’s constructors.

This constructor takes a string object and indicates that it will throw an excep-
tion if it cannot create an Integer object based on the string supplied to it. For ex-
ample, what would happen if you tried to create a number like this?

I nt eger nunber = new I nteger("Doo wop doo wop");

The Integer class would not be able to make heads or tails of this. Rather than cre-
ating any old number, it throws an exception. The documentation indicates it
throws an exception called NumberFormatException.

If a method or constructor indicates that it might throw an exception, you
must be prepared to catch it. (If you forget to use a try-cat chblock with a
method that might throw an exception, you'll know about it because the compiler
will warn you and won't let you compile the code.) So, the real way to create a
new Integer instance based on a string would be to write

try {
I nt eger nunber = new I nteger("Doo wop doo wop");
} catch (Nunber For mat Exception x) {

System out. println("Guaranteed to execute in this case!");

Always check the documentation to see whether you need to handle an ex-
ception, especially if the compiler tells you that you do!

Arrays

Using individual variables to keep track of data works fine—usually. For exam-
ple, for the triangle example, using an i nt variable to keep track of the base and
an i nt variable to keep track of the height works perfectly fine. As another exam-
ple, if an Applet class created a triangle object, it could keep track of the triangle
by using a variable declared like this:

Triangle t1;

This is fine for one triangle, but what happens if the applet needs to keep
track of three triangles? This still isn’t so bad; the applet can declare three vari-
ables:

Triangle t1, t2, t3;

You might begin to see where this could lead to problems. What if the applet
needs to create 100 triangles? Or 1000 triangles? Does the program need to declare
1000 variables, fromt 1 up to t 1000?

There is an easier approach, and that approach involves using an array.

What Are Arrays?

Arrays are collections of variables of the same type. When you declare an array,
you indicate to the compiler that you want to work with a whole set of variables,
all of the same type. For the triangle example, you can declare an array that holds
1000 triangles. As another example, if you needed to keep track of 254 integers,
you could declare an array that holds 254 integers. Then, if you wanted to access a
particular triangle or a particular integer, you would access one of the elements of
that array.

When you declare a variable to hold one integer, you tell the compiler to set
aside enough memory to hold that one integer. When you declare a variable to
hold an array of a certain number of integers, you tell the compiler to set aside
enough memory to hold all of those integers, one right after the other. Figure 12.3
provides a high-level picture of what happens in your computer’s memory when
you declare one integer and when you declare an array of integers.

ARRAYS

275

WORKING WITH DATA

276

Style

your computer’s memory

declare oneinteger ——— int

declare an array of : . . .
four integers e[int] int [int [int]

Figure 12.3 Declaring one integer and an array of four integers.

Declaring an Array

When you declare an array, you define a variable that will represent that array.
The way that you indicate you want to declare an array of values, instead of a sin-
gle value, is to use square brackets. For example, to declare a variable that will
hold an array of integers, you write code like this:

int[] nmylntArray;

There’s another notation that programmers often use for declaring arrays,
and that is to put the square brackets after the variable name, rather than
after the data type. For example, it's perfectly legal to declare an array called
my| nt Ar r aythat will hold an array of integers like this:

int nylntArray[];

Programmers coming from other languages, where this is the only way
to declare an array, often prefer this syntax since this is what they’re used to.
However, this has a subtle disadvantage over the first method. The disad-
vantage is that the data type is not truly reflecting the type of variable you
are declaring. For example, here are two variable declarations:

int tenp;
int results[];

You can’t tell what kind of variables t enpand r esul t sare just by looking at
the data type. You have to look at the variable itself, not at its data type, and
see whether the variable contains a set of square brackets at the end. In this
book, we'll use the approach of putting square brackets on the data type it-
self. In other words, our variable declarations will look like this:

i nt t enp;
int[] results;

After you've defined the variable that will be used to reference the array, you
still need to indicate how large the array should be—that is, how many elements
the array will contain. The way that you do this is by using the same newoperator
you've used before to create other objects. This time, however, instead of using
parentheses to indicate the parameter list, you use square brackets and indicate
how large to make the array. For example, here’s how you would create an array
of four integers:

int[] nylntArray = new int[4];

This code sets aside enough room in the computer to hold four i nt values. You'll
use the variable ny | nt Ar r ayto access these four i nts (as you'll see in a moment).

This kind of thing works for any type of data whatsoever, including objects.
For example, to declare an array of 1000 triangle objects, you could write

Triangl e[] theTriangleLibrary = new Tri angl e[1000] ;

One other thing that can be very useful in declaring an array is that the size of
the array can be provided in a variable. For example, instead of writing the pre-
ceding statement, you could write the following (as long as nuniri angl esis de-
clared as an integer):

Triangl e[] theTriangleLibrary = new Triangl e[numlri angl es];

You might do this kind of thing, for example, if you need to calculate how
large to make your array because you don’t know how large your array will be at
compile time. (For example, this might occur if you're reacting to choices made by
the user.)

ARRAYS

277

WORKING WITH DATA

278

Accessing Elements in an Array

Once you have set aside enough memory for your array, you can put elements
into the array and retrieve elements from the array. You access elements in the
array by indicating which element number you want, using notation like this:

int onelnt = nylntArray[2];

This code accesses the integer stored as element number 2 in an array of i nts de-
clared as nyl nt Ar r ayYou can also put values into an array using notation such as
this:

nylnt Array[2] = 421,

Arrays can sometimes be tricky because of the way that elements in the array
are numbered. If you want the first element in an array, you do not start at ele-
ment 1. Instead, you start at element 0! Here’s an example. What do you think this
chunk of code does?

int[] mylntArray = new nylntArray[4];

for (int i =0; i < 3; i++4)
nylntArray[i] = i;

The first statement declares a variable that will hold an array of integers. It
then allocates (sets aside) the memory in the computer by using the newoperator
and specifies how many i nts this array will hold (in this case, this array will hold
fouri nts).

The next statement sets up a loop from 0 to 3. The loop contains a single state-
ment. In that statement, we access an element in the array and assign a value to it.
The first time through the loop, i will be 0. We access element 0 and assign it the
value of i (which is 0). The second time through the loop, i will be 1. We access el-
ement 1 and assign it the value of 1. The third time, we assign element 2 the value
of 2. The fourth time, we assign element 3 the value of 3.

This chunk of code has accessed all the elements in the array—elements 0, 1,
2, and 3—and assigned each element the value corresponding to its position in the
array. Note that there is no element 4! Figure 12.4 shows what the array of i nts
looks like in memory after the i nts have been initialized by the loop we just went

through.

element0 elementl element2 element3
Lo | 1 [2 | 3 |

Figure 12.4 An array holding four integers initialized to values corresponding to their
position in the array.

Starting with element 0 as the first element often confuses programmers
new to arrays—and for good reason! It’s only natural for a person to think of
the first element as starting in position 1. However, this is not the way that

computers think. For a computer, the first position is 0.

This is most often an issue when you're accessing the last element in an
array. For example, it's quite natural for you to think of the last element in an
array 1000 elements long as being number 1000. However, with arrays, this
is not the case! Since arrays start at 0, the last element in an array 1000 ele-
ments long is at position 999. If you try to access an element beyond the end
of the array (say, element 1000 in an array 1000 elements long), you will
cause Java to generate an error. In particular, Java will—you guessed it—

throw an exception.

Determining the Size of an Array

To help you keep out of trouble by inadvertently accessing an element beyond the
length of an array, Java provides a way for you to test how big an array actually is.
The way you find the length of an array named ny! nt Ar r ay for example, is to
refer to nyl nt Array. | engt hThis represents the number of elements that the
array can hold. For example, what do you think the Syst em out . pri nt | n(jtate-

ment will display in the Java Output window in the following block of code?
int[] nylntArray = new int[52];

Systemout.printin("nmylntArray is " + nylntArray.length + "
el ements long.");

In this case, the message “myIntArray is 52 elements long” will appear in the Java
Output window. To recap: An array of i nts 52 elements long starts at element 0,

ends at element 51, and can hold a total 52 i nts.

These are all examples of one-dimensional arrays. One-dimensional arrays
are good for holding data where you want a list of things, such as a list of the

ARRAYS

Warning

279

WORKING WITH DATA

280

Warning

distances you jog each day over the course of a month (which might be a floating-
point array that is 31 elements long) or the list of test scores from each pupil in a
class (which might be an integer array whose length is equal to the number of stu-
dents in the class).

Sometimes, a one-dimensional array is not powerful enough to do the job. For
example, how would you maintain the squares on a checkerboard with a one-
dimensional array? Perhaps you are maintaining whether a square contains a red
checker, contains a black checker, or is empty: three values. Perhaps you want to
store a 1 for a red checker, a 2 for a black checker, and a 0 if the square is empty
(we'll ignore kings for now). You would need 8 arrays of integers 8 elements long.

Working with all these arrays can be a little awkward. What would come in
handy right now would be an array of arrays—and, fortunately, you can do this
in Java. You can define an array of arrays for a checkerboard like this:

int[][] checkerBoard;

Notice the double set of brackets? This means we want a two-dimensional ar-
ray. What about a three-dimensional array for a game of 3-D Tic-Tac-Toe? You
would define it like this:

int[J[]1[] ticTacToe;

To allocate the memory for our checkerboard (a grid of squares 8 by 8), you
can write

checkerBoard = new int[8][8];

As with all uninitialized i nt values, each element in the checkerboard starts
out set to 0. To access the first row, second column, you can write checker -
Boar d[0] [1] To access the very last square in the eighth row, eighth column, you
can write checker Board[7] [7]

Be careful not to try to access an element in an array that has not yet been al-
located. For example, even though you might have defined a variable that
will hold an array, like this,

int[][]1[] ticTacToe;

don’t start accessing elements in the array until you’ve allocated it (by writ-
ing new i nt [3] [3] [3). If you try to access an element in an array that has
not yet been allocated, Java will throw an exception.

Vectors

Arrays are great for maintaining a collection of items when you know how many
items you'll need before you allocate the array. For example, if you need to deter-
mine the population of the United States and you happen to know the population
for each state, you can declare an array of integers, allocate it to 50 elements, and
store each state’s population in each element. Then, you can loop through the
array and add each entry in the array to your running total:

i nt popul ati on;
int[] state = new int[50];

/'l set each entry in the array to the population of a state

/1 then find the total popul ation
for (int i =0; i < 50; i++)
popul ation += state[i];

This is a fine technique for a fixed number of items, but what happens when
you need to maintain a collection of items where the number of items changes
over time? For example, for the SimpleDraw applet, the user is continually creat-
ing new shapes. We need a way to keep track of these shapes without locking our-
selves into a predetermined maximum number of shapes. Java provides a class
that allows us to work with a list of objects whose number changes over time.
This class is called Vector, and it is defined in Java’s util package.

Objects created based on Java’s Vector class can keep on growing in number
as more items are added to the vector. This is like an array without limits—except
that you'll still generate an error if you try to access an element number beyond
the bounds of what the vector contains. You can construct a vector object just like
any other object:

Vector v = new Vector();

Then, you can use instance methods defined by the Vector class to access ele-
ments in the vector. Here are four methods you might use most often with vectors:

1. To add a new object to the end of the vector, use the method addEl ement ()
This method takes one parameter: the object to add to the end of the vector.

VECTORS

281

WORKING WITH DATA

282

2. To retrieve an object from the vector at a specific location within the vector,
use el enent At () This method takes one parameter: the index of the element
to retrieve. This method returns the object at that location.

3. To change an object in the vector at a specific location within the vector, use
set El ement At () This method takes two parameters: The first is the object to
place into the vector; the second is the entry in which to place it.

4. There’s also a useful method that allows you to tell how many objects a vector
contains. This method is called si ze().

Here’s an example of how the SimpleDraw applet uses a vector to keep track
of all the circles created by the user. First, the applet creates a vector object in
ini t():

Vector circlesToDraw = new Vector();

At first, the vector is empty and doesn’t contain anything; the method ci r -
cl esToDr aw. si ze(would return 0.

When the user creates a new circle, we could add this new circle object (refer-
enced, for example, by a variable named ci r cl € to the end of the vector like this:

circl esToDr aw. addEl enent (circl e);

And finally, when it is time to draw all of the circles, the applet could loop
through the vector by accessing each element in order. One important piece of in-
formation you need to know about retrieving objects from a vector is that you
must cast the object returned by el enent At () to the type of object stored there.
For example, you could retrieve circles (created from a class called Circle) like
this:

Circle circle;
int nunCircles = shapesToDraw. size();

for (int i =0; i <nunCircles; i++)
circle = (Circle)shapesToDraw. el enent At (i) ;

Notice the last line of this code snippet. shapesToDr aw. el ement At (ifeturns
the object at position i in the vector. The object returned is declared in the el e-
ment At () method to be of type Object. This means, to use the returned object as a
circle, you have to cast it to a circle and assign it to a variable defined to reference
a Circle instance. This is what we do in this code snippet. The sample code com-
ing up contains more examples of this.

Hash Tables

Vectors work great when all you want is to step through the elements in the list of
objects sequentially. For example, SimpleDraw has no need to access the fourth
shape (and only the fourth shape) that the user created, or the first one, or the last
one. All that SimpleDraw has to do is to add a new shape to the list and step
through the entire list in the applet’s pai nt () method. (You'll do this yourself in
the sample programs in this chapter.)

This is not the case for all your programs. For example, the Payroll applet we
started earlier would very likely have a need to access one, and only one, em-
ployee. That is, if we wanted the employee with an employee number of 987-12-
3456, it would be great just to look up the employee by this number and have it
hop out of the collection, without the need for looking through each item in the
collection ourselves. We could create an array that was 987,123,456 elements long
(at a minimum), and keep track of all of the employees by storing them in their
corresponding location in the array. While this would work, such an array would
require a large amount of storage, and would not be very practical. To do this
more efficiently, Java provides a class called Hashtable. Like Vector, Hashtable is
also defined in Java’s util package.

The Hashtable Class

Hash tables are actually very simple to use considering the power they provide.
Here’s the idea. Using a hash table is like using a good filing system in a file cabi-
net. When you put away a file, you put it in its proper place in the file cabinet,
stored in the right drawer and in the right folder, so that when you return at some
future time to retrieve the file, you know where it is. You don’t have to look
through every file in order, starting with the first drawer—you can directly to the
drawer and folder where you put it simply by remembering some unique, identi-
fying aspect of the thing you filed.

Using a hash table, you can file an object and retrieve it later by going directly
to it. When you file an object, you need to specify two things. The first is the object
you wish to file. Simple enough. The second is a key that you can use to find the
object again later.

An index can be anything that makes the object unique. It could be a Social
Security number in the case of an employee. It might be the employee’s e-mail ad-
dress. For a collection of baseball cards, it might be the card number on the back
of the card. Whatever you use as a key doesn’t matter, as long as it’s unique (and
as long as you’'ll be able to remember what the key was so that you can retrieve
your object at a later date!).

HASH TABLES

283

WORKING WITH DATA

284

To create a hash table, you can write the following:
Hasht abl e db = new Hasht abl e();

The variable name db in this example stands for “database.” To place and retrieve
data from the hash table, let’s look at two methods that hash tables define just for
this purpose.

get() and put()

Putting an object into a hash table is easy. All you have to do is use the hash table
object’s put () method and specify two parameters: the key you’'ll use to identify
the object and the object you want to put away. For example, for an instance of
class Employee defined like this,

cl ass Enpl oyee {
String nane;
String ssn;

}

you might store an employee object named e in the hash table like this:
db. put (e.ssn, e);

Notice that we use the key as the first parameter, and the object itself as the sec-
ond. Notice also that the key is an object! If you want to use a number as a key,
you have to first find a way to convert the number to an object. The sample pro-
grams show you how to do this.

Now, to retrieve an object, you use the hash table’s get () method and supply
the key. The get () method returns an object, which you have to cast to the proper
type of object (just as you did with vectors). So, to access an employee with the So-
cial Security number represented by the string ssn, you could write

Enpl oyee e = (Enpl oyee) db. get (ssn);

Pretty easy! You can fill up the hash table and retrieve values as if there were no
tomorrow.

SAMPLE PROGRAMS

Sample Programs

We'll start the sample programs by looking at floating-point numbers and arrays.
Then, we’ll get back to the applets we started in Chapter 11, finishing Simple-
Draw and Payroll by using vectors and hash tables.

FloatingPt.u

Open12.01 - floating ptinthe Learn Java Projects folder, make the project in
the ususal way, and drop the file Fl oati ngPt . ht mMonto the Metrowerks Java
icon. You'll see the following two lines appear in the Java Output window:

area of t1 is 67.5
area of t2 is 23.4451

This applet calculates the areas for two triangles. Notice the decimal points!
How did we finally achieve this kind of precision? We used floating-point num-
bers! Let’s take a look at the source code.

Stepping Through the Source Code

Open Fl oatingPt.javaYou'll see two classes here: an applet and a Triangle
class. The Triangle class looks like what we’ve seen before, except this time it de-
fines its data using the floating-point data type doubl € rather than the integer
data type i nt:

class Triangle {
doubl e base;
doubl e hei ght;

doubl e area() {
return base * height / 2.0;
}

Now, the applet can interact with this Triangle class in a very similar way to
what we’ve already seen. Here’s what the applet does in itsi ni t () method. First,
it defines a couple of triangles. The first triangle takes the values 9 and 15 for its
base and height. (We can assign an integer value to a floating-point value without
casting it since floating-point values are more accurate than integers.) The second
triangle has the value 14.232 for the base and 3.2947 for the height:

285

WORKING WITH DATA

286

public class FloatingPt extends java. applet. Applet {
public void init() {
Triangle t1 = new Triangle();

t1. base = 9;
t 1. hei ght 15;

Triangle t2 = new Triangle();
t 2. base 14. 232;
t 2. hei ght 3. 2947,

Then, all we do is print out the area for each triangle. The triangle performs
the floating-point calculation, and we display the results in the Java Output
window:

Systemout.printin("area of t1lis " + tl.area());
Systemout.printin("area of t2 is " + t2.area());

So, now you know how to work with two different kinds of numbers: integer
and floating-point. As you can see, floating-point values are as easy to work with
as integer values; simply declare a data type as f | oat or doubl eand away you go.
Just remember these two rules:

1. When written out, floating-point numbers, such as 4.0, 3.14, or —100.0292,
have the data type of doubl e

2. If you assign a floating-point number to an integer, remember to cast it so that
the compiler won’t complain. (If the floating-point number contained a frac-
tional value, that value would be dropped when assigned to an integer.)

ArrayApplet.n

Open 12.02 - arrays in the Learn Java Projects folder, double-click Array-
Appl et. g make the project, and drop the file ArrayAppl et. ht monto the
Metrowerks Java icon. This applet displays fortunes and advice. There are five
fortunes, chosen for display at random. A new fortune is displayed every time
you resize the applet. A sample session is shown in Figures 12.5 and 12.6.

SAMPLE PROGRAMS

= Applet Diewer: ArrayApplet.class

Look for apportunities

applet started

Figure 12.5 A fortune displayed by ArrayApplet.

=[d=== Applet Viewer: ArrayApplet.class ———

Smell the roses

applet started

=

Figure 12.6 Another fortune displayed by resizing the applet.

Let’s take a look at the source code to get a feel for working with arrays.

Stepping Through the Source Code

This applet illustrates how to create and work with an array. It also uses three
other classes you’ll sometimes take advantage of in your own programs: the Date
class (in the util package), the Random class (also in the util package), and the
Math class (in the lang package). The only class this applet creates is the Applet
subclass called ArrayApplet.

At the top of this file, before we define our new class, we need to import three
of Java’'s classes used by this applet that are not part of the lang package (remem-
ber, the classes in the lang package are imported for us automatically). These are
the Graphics class, which we’ll need in order to override the pai nt () method; the
Random class, which we’ll use to randomly select a fortune; and the Date class,
which we'll use to seed the random number, initializing it to a value so that the

287

WORKING WITH DATA

288

applet is unlikely to repeat the same sequence of fortunes the next time you run
the applet:

i mport java.aw . G aphics;
i mport java.util.Random
i mport java.util.Date;

The applet defines three instance variables. The first, nunst ri ngs is used to
keep track of the number of fortunes in our array of strings. The second, pai nt -
St ri ngs defines the string array, but it does not yet allocate it. The third, r, will be
used to hold an instance of a class called Random, which we’ll use to generate
random numbers:

public class ArrayAppl et extends java. appl et. Appl et {

i nt nunttrings = 5;
String[] paintStrings;
Random r;

In the i ni t () method, we'll create an instance of the Random class. We could
create this instance with an empty parameter list, with code liker = new Ran-
dom(), but, instead, we'll supply a | ong value to seed the random number. Sup-
plying a seed value makes it likely that we’ll get a different sequence of numbers
every time we run the applet. To seed this number, we need a fairly random num-
ber to start with! Here’s how we’ll proceed. We'll find the number of milliseconds
that have elapsed between 1970 and the current date and time. Since this value
will change every time we run the applet (that is, the number of elapsed millisec-
onds keeps on increasing from second to second), we can use this as our random
number seed. Java provides a way to get these milliseconds. Given the current
date and time as maintained by an instance of class Date, there’s a method called
get Ti me() that returns the number of milliseconds since 1970. To create a new
date object with today’s date and time, all you have to do is create a new date
without supplying any parameters. This is shown in the following code:

public void init() {
Date d = new Date();
r = new Randon(d. getTinme());

Now we have a random number object assigned to our instance variable r.
We'll use this random number object in our pai nt () method to choose a fortune
at random.

SAMPLE PROGRAMS

Our next step is to allocate the array of strings that will hold our fortunes and
to initialize this array. We'll create a new string array set to hold five strings. Then,
we'll create a new string for each element in the array:

paintStrings = new String[nunStrings];

paintStrings[0] = new String("Look for opportunities");
paintStrings[1] = new String("Take chances");
paintStrings[2] = new String("Beware of tricks");
paintStrings[3] = new String("Take the day off");
paintStrings[4] = new String("Snell the roses");

}

Everything’s initialized. All that remains is to display a random fortune when
the applet repaints. We can do this in three lines of code by overriding the
pai nt () method.

First, we’ll use the random number object to generate a random number.
There’s a method called next I nt () defined by random numbers that returns a
random integer over the range of all integers, both positive and negative. By di-
viding this number by the number or strings we have and taking the remainder,
we can whittle this number down to the range of —4 to 4. This operation is called
modulo, as in “nextInt() modulo 5,” and it is written using the %character:

public void paint(Gaphics g) {
int index = r.nextlnt() % nunStrings;

We're going to use the variable i ndexas an index into the array. However, we
can’t use a negative number as an index! The only valid indexes range from 0 to 1
minus the number of elements in the array (in this case, from 0 to 4). So, we need
to take the absolute value of i ndex to turn a possible negative value into a posi-
tive value. The Math class defines a class method called abs() that provides this
behavior:

i ndex = Mat h. abs(i ndex);

Now i ndexranges from 0 to 4. We want to use i ndex to select a string in the
string array. We do this by writing pai nt St ri ngs[i ndex]We can use the dr aw
St ri ng() method supplied by the graphics object to make this new string appear
inside the applet:

289

WORKING WITH DATA

g.drawStri ng(pai nt Strings[index], 50, 25);

Now, every time the applet repaints, such as when it’s resized, it will contain
a new fortune, randomly selected from its array of strings.

SimpleDraw.p, Final Version

Open 12. 03- Si npl eDr avin the Learn Java Projects folder. Open Si npl eDr aw. pt
and make the project. Run the applet by dropping Si npl eDr aw. ht Monto the
Metrowerks Java icon. At long last, we've recreated the applet you first saw in
Chapter 4! Figure 12.7 shows what the applet looks like when you create a num-
ber of different shapes in different colors.

In the previous chapter, we got as far as drawing a shape according to the
user’s preference (shape type and color). However, we were only able to draw the
most recent shape; we did not keep a list of all the shapes the user had created
with each click of the mouse. Here, we remember each shape and redraw each
shape in the applet’s pai nt () method. Let’s see how we are able to keep track of
all these shapes.

=[I= Applet Viewer: SimpleDraw.class —]

[Circle =] | EBlue |

applet staried

(@

Figure 12.7 SimpleDraw showing many different shapes in different colors.

290

SAMPLE PROGRAMS

By the way, it’s not quite accurate to say this is the final version! You'll see
three more versions of this applet in the upcoming chapters. First, you'll see a ver-
sion where you can pass parameters to this applet from your HTML file; second,
you’ll see a version of this applet that runs separately from a Web browser or Ap-
plet Viewer; and third, you'll see a version that illustrates the basics of multi-
threading. All of these versions await you in Chapters 13, 14, and 15.

Stepping Through the Source Code

Open Si npl eDr aw. j avaYou might notice that this code looks almost identical to
what you saw in the previous version in Chapter 11. It's very similar, but there’s
one crucial difference: the use of the Vector class. We'll point out the differences
here.

First, in addition to importing the Applet class and the classes in the awt
package, we also import the classes in the util package. This package defines the
Vector class that we’ll use to keep track of the shapes drawn by the user:

i nport java. appl et. Appl et ;
i mport java.util.x*;
i mport java.aw.*;

The SimpleDraw class starts by defining an instance variable that will hold
the vector; it also defines the choice objects that you saw before:

public class SinpleDraw extends Applet {
Vector drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

The i ni t () method is next. It starts by creating a new instance of the Vector
class:

/** Create the GU . */
public void init() {

drawnShapes = new Vector ();

The i ni t () method then moves on to create the choice objects for selecting
the shape to draw and the color in which to draw it. This is the same code you al-
ready saw; we’ll mark its place here with a comment:

/1 Create the two choice objects and add themto the appl et

291

WORKING WITH DATA

After the i ni t () method, we’ve defined the nouseUp() method. This method
starts by creating a new shape just as it did before. Again, we'll put in a place-
holder for this code by using a comment:

public bool ean nouseUp(Event e, int x, int y) {
Shape s; // This shape will be either a circle or a square.
/'l Create the shape just |ike before

The previous version of SimpleDraw assigned the new shape to an instance
variable maintained by the applet. This time, we don’t keep track of individual
shapes in the applet itself; we only keep track of the collection of shapes in the
vector. So, here, we add the new shape to the vector and then invoke r epai nt ()
as we did before:

dr awmnShapes. addEl ement (s) ;
repaint();

return true;

}

We also return true to indicate we handled this event.

The final method that has changed is the pai nt () method. This time, instead
of repainting the single shape maintained by the applet, we repaint every shape in
the vector. This means we have to perform these steps:

1. Determine how many shapes are in the vector.

2. Access each shape, one at a time, and redraw that shape.

Here’s how we do that. First, pai nt () defines two variables: s will hold the
shape we access from the vector, and nunhapeswill hold the number of shapes
in the vector:

public void paint(Gaphics g) {
Shape s;
i nt nunBhapes;

We'll determine the number of shapes in the vector by using an instance
method supplied by the vector, called si ze():

292

SAMPLE PROGRAMS

nunShapes = drawnShapes. si ze();

Then, we'll loop through the number of shapes in the vector, accessing each
one in turn:

for (int i = 0; i < nunBhapes; i++) {
s = (Shape) dr awnShapes. el ement At (i) ;

Notice that we need to cast the object returned by el ement At ()to the proper
class type. el enent At ()is defined as returning an object of class Object; we know
this object will be a shape object, and we want to assign it to a variable that holds
a shape. To do this, we must cast the returned object to be of type Shape. (Be
aware that this code only works because we are dealing with objects that really
are shapes; you can’t just go around casting any old object into a shape or some
other class type that it is not. However, you'll use this technique a lot in situations
like this.)

At the end of this method, we redraw the shape by invoking its draw()
method:

s.draw(g);

The Shape, Circle, and Square classes are identical to what you saw before; we
won’t repeat them here.

Notice that using an array to keep track of the shapes would not have worked
as well as using a vector. With an array, we would constantly have to worry about
adding a new shape to the array beyond the bounds of the array. If we ever
maxed out the array, we would have to allocate a new array a little bit larger than
the one we were using, move all the elements from the old array to the new array,
and then add our new shape to the new array. The vector object handles all these
details for us. This is another good example of Java supplying a class that makes
our programming task easier.

293

WORKING WITH DATA

Payroll.u, Final Version

Open 12. 04- Payrol | in the Learn Java Projects folder. Open Payr ol | . pand
make the project. Drop the file Payr ol | . ht monto the Metrowerks Java icon to
run the applet.

This applet is fully functional and allows you to enter new employees into a
database and retrieve previously entered information for employees. (Of course, a
commercial payroll applet would have better lookup methods, offer confirmation
of changes, provide some security, allow for data other than integers, and so on.
While all these features would be great, the point of this applet is to show how to
develop a user interface that accepts keyboard entry, illustrate how to keep track
of data using a hash table, and provide an example of handling an exception.)

To enter a new employee into the Payroll applet or to search for an existing
employee, click in the text field for the employee number, enter a number, and
press enter. If information for that employee exists in the payroll applet, that in-
formation is displayed in the text fields. Otherwise, the payroll information will
be all zeros.

To enter new values or change the values for the employee’s hourly wage and
hours worked, click in the appropriate text field, enter a new number, and press
enter. When there is data for both the hourly wage and hours worked, the applet
will display the employee’s earned income.

Figure 12.8 shows the payroll information for employee number 1. The user
typed 1 into the text field for the employee number and pressed enter. The user
then typed in the hourly wage and hours worked and pressed enter for each text
field. Once all the data was entered, the applet totaled that employee’s earned in-
come. All this data was saved in the employee object and made part of the data-

base.
=[d=— HApplet Viewer: Payroll.class ————
Ermplayee number: 1
Hourly wage: 15
Hours worked: B2
Earned income: 930
applet staried
]

Figure 12.8 The payroll information for employee number 1.

294

SAMPLE PROGRAMS

=[1=— Applet VDiewer: Payroll.class
Employes number: 2
Hourly wage: 20
Hours worked: g
Earned income: 1650
applet started
=

Figure 12.9 The payroll information for employee number 2.

Figure 12.9 shows the payroll information for employee number 2. Here, the
applet saved all of employee number 2’s information into the database. Now
there are two employees in the database. If the user now typed a 1 into the em-
ployee number field and pressed enter, the applet would look up the payroll data
for employee number 1 and redisplay that information in its text fields.

Stepping Through the Source Code

Open Payr ol | . j avao see what's changed from the previous version. Here’s the
concept of what we're going to do. We're going to create new employee objects
based on the information the user enters into the text fields. We're going to use an
instance of class Hashtable to keep track of the employee objects. By using a hash
table, we’ll be able to retrieve any employee object, as long as we have their em-
ployee number. We'll use the employee number for each employee as the em-
ployee’s key. When the user types a new number into the employee number text
field, we’ll take the characters the user typed and turn them into a number and
then use that number as the key to look up that employee object in the hash table.
If the employee is found, we’ll display the employee’s payroll information in the
other text fields. If the employee is not found, we'll create a new employee object
using this number and add it to the hash table.

We'll start looking at the code by examining three utility methods. The first is
i nt FroniText Fi el d(,) an instance method defined as part of the applet. This
method’s purpose in life is to take the characters a user enters into a text field and
convert them into an i nt data type. This method takes a text field as a parameter
and returns ani nt:

295

WORKING WITH DATA

296

int intFronTextField(TextField tf) {

It starts off defining two variables. The string s will be used to hold the char-
acter data in the text field; val uewill be used to hold the i nt we’ll return:

String s;
i nt val ue;

This method starts by retrieving the characters in the text field passed to this
method. The method get Text () returns a string object that has the characters the
user typed:

s = tf.getText();

To convert this into ani nt, we’ll use a class method defined by Integer called
par sel nt () This method takes a string and returns an i nt. Since this method
might throw an exception, we have to use a t ry- cat chblock so that we’re pre-
pared to catch the exception. We'll try to perform the conversion in the t r y block;
we'll catch any exceptions thrown in the cat chblock:

try {

val ue = I nteger.parselnt(s);
} catch (Exception e) {

val ue = 0;

setCurrent(null);

}

If the conversion to an i nt did not work and Java threw an exception, we set
val ueto 0 and set the current employee to nul |. (You'll look at the method set -
Cur r ent ()in a moment. The purpose of the set Cur r ent ()method is to save the
current employee object in an instance variable named cur r ent . This instance
variable is maintained by the applet. set Curr ent ()also redisplays the informa-
tion in the text fields so that it’s appropriate to the current employee.) Finally, we
return the value, and the method ends:

return val ue;

}

Next, let’s look at a method called f i ndEnpl oyee() This is also an instance
method defined as part of the applet. This method takes an i nt as a parameter
and returns an instance of class Employee:

SAMPLE PROGRAMS
Enpl oyee fi ndEnpl oyee(i nt nunber) {

This method consists of a single statement, but there’s a lot going on in this
statement. This method returns an employee object that it finds in the hash table.
To get the employee object, this statement uses the get () method, supplied by the
hash table. The instance variable we use in this applet to keep track of the hash
table is called db (for “database”). To invoke get (), then, we can say db. get ().
The get () method takes a key, and hash table keys must be objects. To obtain an
appropriate object based on the employee number, we can create an instance of
class Integer to represent this number. We can do this by writing new | nte-
ger (nunber) The full statement looks like this:

return (Enpl oyee) db. get (new | nt eger (nunber));
}

Notice that, as with the vector, get () returns an object of class Object. This
means that if we want to work with an instance of class Employee, we need to
cast it to Employee. We can safely do this because all the objects in the hash table
are instances of class Employee; if they were instances of some other class, we
could not do this.

One more thing. If there is no employee object that uses the key we’ve indi-
cated, then get () will return null, and that’s what f i ndEnpl oyeef will return as
well.

For our third utility method, take a look at addNew(). This instance method
creates a new employee object given an employee number and adds this em-
ployee to the database. This method takes the employee number as a parameter
and returns the newly created employee object:

Enmpl oyee addNew(i nt numnber) {

After creating the new employee object, this code initializes the employee
number and sets the other instance variables to 0:

Empl oyee e = new Enpl oyee();
e. i dNunmber = nunber;

e. hour | yWage = 0;

e. hour sWwrked = 0;

It then uses the hash table’s put () method to put the new employee object
into the hash table. The put () method requires a key as its first parameter. Again,

297

WORKING WITH DATA

298

we'll create an Integer instance out of the employee number. The second parame-
ter for put () is the employee object to add:

db. put (new I nt eger (nunber), e);

At the end of this method, we again use the method set Cur r ent ()to set the
current employee maintained by the current variable and to display this new
employee’s information in the text fields. Then, we return the new employee
object:

setCurrent(e);

return e;

}

With an understanding of these methods and the approach taken by this ap-
plet, let’s look at the rest of the applet.

The file begins by importing the Applet class and the awt and util packages
(we need the util package for the hash table):

i mport java. appl et. Appl et;
i mport java.aw.*;
i mport java.util.?*;

As with the previous version of Payroll, we define instance variables to hold
the text fields. We also define an instance variable to hold the hash table:

public class Payroll extends Applet {
Hasht abl e db;
TextFi el d textFiel dEnpl oyee;
TextField textFieldWge;
TextField textFieldHours;
Label | abel Ear ned;

In addition, we also define an instance variable to hold the current employee:
Enpl oyee current;
The i ni t () method creates a new hash table. The rest of the i ni t () method

creates the same labels and text fields in a grid layout you saw before. We’ll mark
its place with a comment:

SAMPLE PROGRAMS

public void init() {

/'l Create the enpl oyee dat abase.
db = new Hashtabl e();

/!l Create the | abels and text fields.

Before we leave the i ni t () method, we also invoke set Curr ent ()and indi-
cate that we’re not currently looking at any employee object—since there aren’t
any yet to look at:

setCurrent(null);

The method act i on() handles the events generated by this applet. The pre-
vious version showed how we could tell when the user typed into a text field and
pressed return. In this version, we’ll access the data in the text fields and use them
to initialize the employee objects.

The act i on() method starts off by defining variables to hold an employee ob-
ject and the employee number:

public bool ean acti on(Event e, Object arg) {

Enpl oyee enpl oyee;
i nt numnber ;

One of the parameters passed to this method is an event object, which con-
tains the information that indicates what generated this event. Just as with the
previous version, we test to see what text field the user has typed text into. The
event’s t ar get instance variable holds this text field. The first possibility is the
employee number text field:

if (e.target == textFiel dEnpl oyee) {

If the text field is the one used for the employee number, we use the method
i nt Fronifext Fi el d(,)which we’ve already seen, to retrieve the employee num-
ber. Then, we use the method f i ndEnpl oyee() which we’ve also seen, to retrieve
the employee with this number from the hash table:

nunber = i ntFronirext Fi el d(t ext Fi el dEnpl oyee) ;
enpl oyee = fi ndEnpl oyee(nunber);

299

WORKING WITH DATA

300

If an employee with this number could not be found in the hash table, em
pl oyeewill be equal to nul |. If this is the case, then we want to create a new em-
ployee using this number. We use the method addNew(), which we also covered
earlier:

if (enployee == null)
enpl oyee = addNew(nunber);

Now, we invoke set Cur r ent () with this new employee to set the current
variable and display this employee’s payroll information:

set Current (enpl oyee) ;
}

If the event's target is the hourly wage field, then we want to set the current
employee object’s hourly wage to the value the user entered into this field. We can
use the method i nt Fr onilext Fi el d(Yo retrieve this i nt from the characters in
this field:

else if (e.target == textFieldWage) {

if (current '=null) {
current. hourl yWage = i nt FronText Fi el d(t ext Fi el dWage) ;

We also want to update the display for the earned income. If the user has just
changed the value for the hourly wage, we can reflect that change in the earned
income display immediately. The method r ecal cEar ned()performs this simple
recalculation and displays the new value in the appropriate label in the applet:

recal cearned();

}

We want to do the identical kind of thing with the hourly wage text field. That
is, we want to retrieve the value the user entered into the text field, assign it to the
appropriate instance variable for the current employee, and recalculate the value
for the earned income:

} else if (e.target == textFieldHours) {

if (current !'= null) {
current. hoursWorked =i nt FronText Fi el d(t ext Fi el dHours);

SAMPLE PROGRAMS

recal cearned();
}

When we exit this act i on() method, we'll return whatever the superclass
thinks is appropriate (true or false):

return super.action(e, arg);

Let’s take a quick look at the two methods we haven’t seen yet for this applet:
set Current ()and recal cEarned() set Current ()starts by assigning the new
employee object to the applet’s instance variable named cur r ent:

voi d set Current (Enpl oyee e) {
current = eg;

If there is not a current object (that is, if it is equal to nul |), then set the text
fields to contain O:

if (e ==null) {
t ext Fi el dEnpl oyee. set Text (" 0");
t ext Fi el dWage. set Text ("0");
t ext Fi el dHour s. set Text (" 0");

Otherwise, if there is an employee object, convert the i nt data maintained by
this employee into a string and display this text in the text field:

el se{

t ext Fi el dWage. set Text (I nteger.toString(current. hourl yWage));
t ext Fi el dHour s. set Text (I nteger.toString(current. hoursWrked));

At the end, recalculate the earned income to reflect any new data:

recal cEarned();

301

WORKING WITH DATA

302

recal cEar ned()asks the current employee object to calculate its own earned
income (hourly wage times hours worked). If there is no current employee, then
we set the earned income to be 0. The last line sets the label in the applet that dis-
plays the earned income:

void recal cEarned() {

i nt earned;
if (current !'= null)

earned = current. earnedl ncone();
el se

earned = O;

| abel Ear ned. set Text (I nteger.toStri ng(earned));

The Employee class is identical to what you saw before, so we won't repeat it
here.

This applet illustrates a lot of functionality. It shows you how to arrange a
user interface, how to acquire data from the user, how to convert between i nt
data types and objects (such as Integers and Strings), and how to store and re-
trieve data in a hash table. You are likely to do many of these things when writing
your own Java applets.

Review

This chapter rounded out your knowledge of how to work with data in Java.
Working with data involves integer and Boolean data as well as floating-point
values, characters, and objects that maintain data such as strings and instances of
class Integer. You also learned about exceptions, so you'll know what to do if you
encounter any error conditions that might arise when working with your data.

To keep track of collections of data, you can use arrays. Java also defines two
useful classes called Vector and Hashtable. Vectors contain a simple list of objects;
hash tables allow you to find objects based on a key.

What’s Next?

Chapter 13 snoops around some advanced areas of Java programming, including
how to pass values to your applet from your HTML file, how to define more than
one method with the same name, and how to throw exceptions (that is, in addi-
tion to catching them, which you learned about here).

In Chapter 14, we'll cover how to make your Java programs run separately
from a Web browser, and we'll close in Chapter 15 by pointing out areas you can
explore further to learn even more about Java.

WHAT'S NEXT?

303

Chapter 13
Advanced Topics

This chapter will highlight some advanced features you can take advantage of in
your own applications. Even if you don’t use these features right away, they’re
useful to know about because you're likely to run across them when you look
over other Java programs generally available on the Web. The advanced features
of Java discussed here include applet parameters, method overloading, construc-
tors, constants, and throwing exceptions.

Applet Parameters

So far, all of the HTML files that have incorporated our applets have been very
simple. These HTML files used the <appl et >tag to specify the name of the applet
to run as well as the initial height and width of the applet’s window. With only
these parameters, our applets had to be self-contained. That is, the HTML file that
launched the applet did not change anything about the applet, other than its ini-
tial size.

However, it is possible to embed values, or parameters, in your HTML file
that the applet can access. The way you do this is to place the parameters within
tags named <par anpright between the <appl et >and </ appl et >tags.

For example, if you wanted to supply a parameter named “minimumwage”
to the Payroll applet to make sure you don'’t initialize any employees to an illegal
value, you could write something like this:

<appl et code="Payrol|.class" w dth=270 hei ght =150>
<par am nanme=m ni nrumwage val ue="4.25">
</ appl et >

Now, when Congress passes a new minimum wage law or when a business in an-
other country wants to use the Payroll applet, users of this applet can set this
value according to the new conditions.

To retrieve this value in an applet, you use an applet instance method defined
by Java called get Par anet er J. This method takes a string with the name of the

305

ADVANCED TOPICS

306

parameter to access. get Par amet er ()returns a string representing the value of
this parameter. Here’s a snippet:

String wageString = getParameter (" mni numvage") ;

In this example, wageSt ri ngis now “4.25”. If we want a f | oat number, we
have to convert this string to a number before we can use it like a number. For ex-
ample, we can write

fl oat wageFl oat ;

try {
fl oat wageFl oat = Fl oat. get Val ue(wageString).toFl oat;

} catch (Exception e) {
wageFl oat = 4.25; // default

The sample programs at the end of this chapter contain an example of how to
customize your applet by passing values to it from your HTML file.

Method Overloading

So far, all of our methods have used unique names. This might seem to be a re-
quirement for methods—that each one have its own, unique name—but this is not
precisely true. The real requirement is that each method belonging to the same
class have a unique signature. What do we mean by a signature? A signature con-
sists of a method’s name and parameter types. This means that two methods in the
same class can be named identically—as long as either the number of parameters
or, if two methods with the same name have the same number of parameters, the
types of parameters are different. Here are some examples that illustrate this rule.
Let’s start with a simple method called addTheseNunber s(,)defined like this:

i nt addTheseNunmbers(int numl, int nunR) {
return nunml + nung;

}

This method would work fine as long as there were only two numbers to add.
However, what if we sometimes wanted to add two numbers and other times
wanted to add three numbers? It would be nice not to have to worry about differ-
ent method names, but to always invoke a method called addTheseNunber s(,)re-
gardless of how many numbers we had to add.

METHOD OVERLOADING

One way to solve this problem is by writing two methods, both called addThe-
seNumber s() The first method would define two parameters, the second would
define three parameters. Here’s how these two method definitions might look:

i nt addTheseNunbers(int nunil, int nun?) {
return nunl + nung;

i nt addTheseNunbers(int nunl, int nun2, int nunB) {
return numl + nun + nunB;

}

What happens when we write a line of code that looks like the following?
i nt sum = addTheseNunbers(10, 20);

In this case, Java is smart enough to invoke the first method named addTheseNum
ber s() since that method defines two parameters.
What happens with the following line of code?

i nt sum = addTheseNunbers(10, 20, 15);

You guessed it—Java invokes the second method, matching the three values here
to the method that declares three i nt parameters.

As before, the parameters in your method invocations must match up with
one of your method definitions. If Java cannot find a method that matches an in-
vocation, you'll either receive a compiler error or a runtime error (depending on
the class you're compiling and the class defining the method).

In addition to defining a different number of parameters for two methods
with the same name, it’s also perfectly legal to define a second method with the
same name and the same number of parameters—as long as at least one of those
parameters is of a different type than in the first method. For example, here’s an-
other method with the same name:

doubl e addTheseNunber s(doubl e nunml, double nunR) {
return nunl + nun®;

}

Now, if you invoke addTheseNunber s(Jike this,

int i = addTheseNunbers(10, 15);

307

ADVANCED TOPICS

308

the method for i nt values will execute, and it will return the i nt value 25. If you
invoke addTheseNunber s(Jike this,

doubl e d = addTheseNunbers(10.3, 14.6);

the method for double values will execute, and it will return the double value of
24.9.

Even with the same number of parameters, Java is smart enough to figure out
which method is the appropriate one to invoke. Notice that in all of these exam-
ples, the return value does not play a role in determining what method to invoke!
Only the method name, the number of parameters, and the types of parameters
are used to distinguish between methods.

Constructors

When you create a new object from a class, Java allocates the appropriate amount
of memory in the computer to hold your new object. Then, Java invokes any con-
structors that are defined for your new object. Your constructor can do whatever it
wants to do. The most common task for a constructor is initializing instance vari-
ables, and this is what you’ll do most often if you define your own constructor.

Constructors are defined somewhat similarly to methods, except they don’t
take any keywords or define a return value. For example, here’s a class called
Employee that defines a constructor:

cl ass Enpl oyee {
int ssn;
i nt hourl yWage;
i nt hour sWr ked;

// Define a constructor.

Enpl oyee() {
hour | yWage = 10;

/1 Define an instance nethod.
i nt earnedl ncone() {
return hourl yWage * hour sWor ked;

This class is similar to what we worked with before when we defined an Em-
ployee class, but this time we have defined a constructor for the class. The con-
structor initializes a new employee’s hourly wage to 10. Perhaps after a few
months, the employee will get a raise, but new hires start out with 10 as their base
wage. What this means, then, is that when you create an instance of an Employee
class like this,

Enpl oyee e = new Enpl oyee();

e. hour | yWagewill start out equal to 10, and e. hour sWor kedwill start out equal to
0 (remember, Java sets your i nt variables to 0 if you don’t initialize them your-
self).

You can also pass parameters to constructors. You’ll find that Java defines lots
of constructors that take parameters for its classes. For example, if we wanted to
set the employee’s number when we created it, we might write a constructor like
this:

Enmpl oyee (int ssn) {
this.ssn = ssn;
hour | yWage = 10;

}

Now we can create a new employee like this:
Enpl oyee e = new Enpl oyee(401);

We might write this code for the 401st person to join the company. Even if this
were the only constructor we defined, we could still create an employee object
without passing a value for the ssnparameter value to the constructor. That is, we
could still create an employee like this:

Empl oyee e = new Enpl oyee();

We can do this because Java always defines a default constructor for you, and
this default constructor does not take any parameters. With the default construc-
tor, all of your object’s instance variables will be set to their default values, but at
least Java saves you the trouble of needing to create a constructor if you only want
the default behavior.

CONSTRUCTORS

309

ADVANCED TOPICS

By the Way

By the Way

310

You don’t have to invoke your superclass’s constructor. Java will do this for
you automatically.

Constants

Variables are great for keeping track of data that changes over time. Sometimes,
however, you'll want to keep track of data that won’t change, ever, while your pro-
gram is running.

We saw an example of this kind of thing already in SimpleDraw. The user was
able to tell the applet what shape to draw and what color to draw it in, but the
user was unable to set the size of the shape—the size of the shape was always con-
stant. Appropriately enough, programming languages refer to these types of data
as constants. In other words, a variable that has a value, but cannot be changed, is
called a constant.

You can define a constant in Java by using the keyword f i nal, meaning the
value can never be changed. For example, SimpleDraw can define a constant to
represent the radius of a circle like this:

final int radius = 20; // circles are 20 pixels in radius

Often, constants are placed in the class. This allows any part of your code to
easily access the constant. So, you could also define r adi uslike this:

static final int radius = 20; // circles are 20 pixels in radius

Why use a constant? Why not just use the value 20 wherever the program
needed to know the radius of a circle? There are three reasons for using a
constant. First, a well-named constant documents what the number is used
for. Second, using constants can speed up Java’s execution. And third, if the
value ever changes, all you need to do is change the number in one place.

Throwing Exceptions

You've learned the basics about handling exceptions, but, like packages, excep-
tions are available for you to use as well. That is, they’re not just something you
have to catch; your code can also throw its own exceptions. All you have to do is
create your own Exception subclass or use one of Java’s. If you hit an error condi-
tion in your own code, you can write

THROWING EXCEPTIONS

t hrow new MyException();

and your code exits, tossing the exception object to the code that invoked your
method. Your method must declare that it might throw an exception if you use a
t hr owkeyword. For example, you might write

voi d myMet hod() throws MyException {
if (errorCondition())
t hrow new MyException();

}

This code also assumes you’ve defined your own subclass of Exception, called
MyException:

cl ass MyException extends Exception {

}

There’s also a nifty keyword called f i nal | ythat allows you to execute a block
of code, no matter what happened. For example, you can write

try {
/1 try sonething here

} catch (Exception e) {
/1 catch an exception here

} finally {
/'l execute this code no matter what happened in the above try
/1 and catch bl ocks

Remember how we talked about different types of exceptions in the previous
chapter? By catching a particular type of exception, you can choose to do different
things, depending on the exception that occurred. You can catch more than one
type of exception by presenting a few different cat chblocks, like this:

try {
/1 try sonething here

} catch (ExceptionSubclassl e) {

/'l catch an exception of type ExceptionSubclassl here
} catch (ExceptionSubclass2 {

/'l catch an exception of type ExceptionSubclass2 here

311

ADVANCED TOPICS

312

} catch (Exception e) {
/1 catch any other type of exception here

}

You can also “handle” an exception by rethrowing it. For example, you can
write

try {
/1 try something here

} catch (Exception e) {
throw e;

}

If you do this, you must declare your method as indicating it throws an exception.
Also, be aware that if no one else handles the exception, your program (or more
technically, the thread that is currently executing) will come to a halt. Barry Boone’s
Java Essentials for C and C++ Programmers, from Addison-Wesley, has many more ex-
amples of why, when, and how to create and use your own exceptions.

Sample Programs

We'll look at three different programs in this section. The first shows you how to
pass values to your applet from your HTML file. The second shows you how to
initialize objects by rolling your own constructor. The third program provides an
example of throwing your own custom exception.

SimpleDraw.u

Open the file Si npl eDr aw. jin the subfolder 13. 01- appl et par ansn the Learn
Java Projects folder. Make the project, then run this applet by dropping the HTML
file Si npl eDr aw. ht nlonto the Metrowerks Java icon. A similar applet to the Sim-
pleDraw applet will appear—except that you'll notice the colors are different than
before (Figure 13.1). Once you're done playing around with these new shape col-
ors, quit the Applet Viewer and take a look at the source code.

Stepping Through the Source Code

The original SimpleDraw applet hard-coded the colors that were used to display
the shapes. These colors were built into the applet’s i ni t () method and were set
to red, green, and blue. In the version here, rather than forcing red, green, and
blue to be the colors, we have instead structured the applet so that every person
placing the applet in a Web page can choose which colors the applet will use.

SAMPLE PROGRAMS

=[0= Applet Viewer: SimpleDraw.class

| Circle =] | ‘white + |

Figure 13.1 Shapes that are white, black, and pink.

applet started

El

What'’s wrong with pink, cyan, and orange? You have a problem with that? With
applet parameters, this is no problem at all because you can change them just by
changing the HTML file.

Double-click Si npl eDr aw. ht nito see how this file is set up. This file will ap-
pear as in Figure 13.2.

This file names each parameter so that the applet can find it later. Here, we're
supplying three colors. We’ve called these colorscol or 1 col or 2 and col or 3 We
use the namekeyword to define the parameter’s name. Immediately following the
name, we use the val uekeyword to supply a value for this parameter:

<appl et codebase="Si npl eDraw' code="Si npl eDr aw. cl ass" codebase=
" Si npl eDraw' wi dt h=270 hei ght =150>

<par am nane=col or1 val ue="Wite">

<par am nane=col or 2 val ue="Bl ack" >

<par am nane=col or 3 val ue="Pi nk" >

</ appl et >

The values are defined inside quotes in case the values contain spaces in their text.
The next step is to access these values in your applet. Originally, we defined a
new choice object and added the choices to it by writing

313

ADVANCED TOPICS

314

S=—————————— SimpleDraw.himl

“applet cndebuse="5impleﬂruw"|cnde="5impleDPuw.cluss" width=270 height=150>
<param name=color 1 walue="Hhite">
<param name=co |l or? walue="EBlack"»
<param name=co o3 walue="Fink"*
“japplet:

HEE] JLine: 1 [T«

Figure 13.2 The Si npl eDr aw. ht i file, which supplies custom colors to the applet.

col or Choi ce = new Choi ce();
col or Choi ce. addl tem("Red") ;
col or Choi ce. addl tem(" Green");
col or Choi ce. addl ten(" Bl ue");

Now, however, we want to get the parameter given its name. To do this, we
use the method get Par anet er §. This method takes a string with the name of the
parameter to access. get Par anet er ()returns a string, which is exactly what we
want for the addl t enm() method for choices. Here’s how we would get the value
for the color parameters embedded in the HTML file:

col or Choi ce = new Choi ce();

col or Choi ce. addl t en(get Paraneter ("col or1"));
col or Choi ce. addl t en(get Par anet er (" col or2"));
col or Choi ce. addl t en(get Par anet er ("col or3"));

get Paranet er ("col or 1")would retrieve the value “White,” given the
HTML file we supplied above. Similarly, get Par anet er (" col or 2" would re-
trieve the value “Black,” and get Par anet er (" col or 3"jvould retrieve the value
“Pink.”

With all these color possibilities, we need more choices in our color selection
code. We can expand the choices of red, green, and blue to look more like this:

if (colorString.equal s("Red"))
s.color = Color.red;

else if (colorString.equal s("Geen"))
s.color = Col or. green;

else if (colorString.equal s("Black"))
s.col or = Col or. bl ack;

else if (colorString.equal s("Blue"))
s.col or = Col or. bl ue;

SAMPLE PROGRAMS

else if (colorString.equal s("Pink"))
s.col or = Col or. pi nk;
else if (colorString.equal s("Cyan"))
s.col or = Col or. cyan;
else if (colorString.equal s("Orange"))
s.col or = Col or. orange;
el se
s.color = Color.white; // default color

Red, green, pink, and the other colors are a few of the color choices pre-
defined in the Color class. You can look at the documentation for the Color class
supplied in the Java APIs (application programming interfaces) to see a complete
list of colors that are provided by Java. As we covered in Chapter 11, you can al-
ways create your own custom colors as well.

You might want to play around with this applet and HTML file, changing the
colors to get a feel for how this all works. (It's even more fun with colors like cyan
and orange, but the screenshots for this book required colors that would be some-
what distinct in gray-scale.)

Constructor.p

Go to the subfolder 13. 02- const r uct orin the Learn Java Projects folder. Open
Const ruct or. pand make the project. Run the applet by dropping Const r uc-
tor. htnl onto the Metrowerks Java icon. This applet will write the following
three messages to the Java Output window:

This circle’s radius is 10
This circle’'s radius is 20
This circle's radius is 20

Each of the three circles created in this applet is created with a different con-
structor. Let’s take a look at the source code.

Stepping Through the Source Code

Open Const ruct or. j avdo view the source code. There are two classes defined
in this file: Constructor, which is an applet, and Circle. The top part of the Circle
class defines one instance variable and one class variable, set to a default radius:

class Circle {
static int defaultRadius = 10;
int radius;

315

ADVANCED TOPICS

316

Then, the class defines three constructors. The first constructor overrides the
default constructor, which does not take any parameters. The code for this con-
structor simply assigns the circle’s radius to be the value of the default radius:

Crcle() {
radi us = def aul t Radi us;

}

The second constructor takes a radius as a parameter and uses this value to set the
radius for this circle:

Crcle(int radius) {
this.radius = radius;

}

The third constructor takes a circle object as a parameter and uses this object to set
the radius to the same value in this object:

Crcle(Crcle referenceCircle) {
this.radius = referenceCircle.radius;

}

We can write three constructors, all with the same name, because of method
overloading. The first constructor is distinguished from the second and third be-
cause of the different number of parameters (zero and one). The second and third
constructors can be distinguished by the different parameter types (i nt and Circle).

The Circle class also defines an instance method that displays the radius for
the current circle:

voi d di splaylnfo() {
Systemout.println("This circle's radius is " + radius);

Going back up to the top of the code, the Constructor applet defines an
i ni t () method. The i ni t () method defines three variables, one to hold each cir-
cle it will create:

public class Constructor extends Applet {
public void init() {
Crcle cl, c2, c3;

SAMPLE PROGRAMS

The i ni t () method then creates three circles, each time using a different con-
structor defined in the Circle class. The first time, i ni t () does not supply any pa-
rameters, so the circle will take on the default radius (the value 10). The second
time, i ni t () supplies a radius, so the circle will take on that radius value (the
value 20). The third time, i ni t () passes the second circle as a reference circle, so
the third circle will have the same radius value as the second circle (that is, it will
be 20):

cl = new Crcle();
c2 = new Circle(20);
c3 = newCrcle(c2);

Then, each of the circles” information is printed, resulting in the display to
the Java Output window:

cl.displaylnfo();
c2.displayl nfo();
c3.displayl nfo();

ExceptionApplet.p

For our last example, go to the subfolder 13. 03- excepti onin the Learn Java
Projects folder. Open Except i onAppl et . umake the project, and run the applet
by dropping Except i onAppl et . ht nbnto the Metrowerks Java icon. Here are the
messages this applet will write to the Java Output window:

Exception with radius -20
This circle’s radius is 10
This circle’ s radius is 20
This circle’s radius is 10
This circle’s radius is 20

This applet is very similar to the one we just saw that defined three construc-
tors for the Circle class. This time, we created four circles, and creating one of
these circles caused an exception to be thrown! Let’s take a look at the source
code.

317

ADVANCED TOPICS

318

Stepping Through the Source Code

Open Except i onAppl et . j avaAt the very bottom of this file, we've defined our
own Exception subclass, called ImaginaryCircleException. We’ve simply created
an empty class; the class’s name is enough to identify what exception this defines:

cl ass | magi naryCi rcl eExcepti on extends Exception {

}

The Circle’s class definition is the same as before, except we’ve changed the
constructor that takes the i nt parameter for the circle’s radius. This time, instead
of writing

Crcle (int radius) {
this.radius = radius;

we're a little more careful about the circle we're creating! Instead of creating a cir-
cle with any old radius, we first verify that the radius is in fact not a negative
number. If it is, someone is attempting to create an imaginary circle. If that is the
case, we want to throw an exception so that the code creating this circle can han-
dle this problem in a way it finds appropriate. The circle constructor does not pre-
sume to know what the code creating the circle wants to do when it tries to create
an illegal circle. All the circle constructor does is notify the code that this kind of
circle can’t exist. Here’s the new constructor:

Crcle(int radius) throws I nmagi naryCircl eException {

if (radius < 0)

t hrow new | magi naryCircl eException();
el se

this.radi us = radius;

As you can see, the constructor must indicate that it might throw an excep-
tion. It does this by using the t hr owskeyword, followed by the type of exception
it might throw. The code creates and throws an instance of ImaginaryCircle-
Exception if the radius is negative. Otherwise, all is fine, and the circle takes on
the radius value supplied to it.

SAMPLE PROGRAMS

The ExceptionApplet code progresses in a similar way to what you saw
earlier. Its i ni t () method starts out defining variables to hold the new circle ob-
jects it will create. It then creates a circle using the default constructor, which
hasn’t changed from before:

public class ExceptionAppl et extends Applet {
public void init() {
Crcle cl, c2, c3, c4;

cl = new Crcle();

Next, the i ni t () method tries to create two circles using the new circle con-
structor. First, it tries to set the circle’s radius to 20. In order to use the new con-
structor, which might throw an exception, the call to this constructor must be
wrapped in a t ry block. The t ry is followed by a cat ch

try {
c2 = new Circl e(20);
} catch (I maginaryCrcl eException e) {

System out. println("Exception with radius 20");
c2 = new Crcle();

}

If the constructor throws an exception of type ImaginaryCircleException, the
cat chblock will be able to handle this situation. It will display a message to the
Java Output window indicating what went wrong, and it will then create a de-
fault circle. As it happens, everything goes fine with creating a circle of radius 20;
the constructor never throws the exception since the radius value supplied is not
negative.

However, thei ni t () method then tries to create a circle with a radius of —20.
Trying to do that triggers the circle’s constructor to throw an exception. You can
see the exception message appear in the Java Output window, and the third circle
has a radius of 10, which is what's created by the default constructor:

try {

c3 = new Circle(-20);

319

ADVANCED TOPICS

320

} catch (I maginaryGircl eException e) {

Systemout.println("Exception with radius -20");
c3 =new Circle();

}

The rest of the i ni t () method is similar to what was there before: A new cir-
cle is created using the third constructor, and then the information for each circle
is displayed:

c4 = new Circle(c2);

cl.displaylnfo();
c2.displaylnfo();
c3.displaylnfo();
c4.di splaylnfo();

As this example shows, you don’t just have to respond to Java’s exceptions;
you can also use exceptions to signal and handle error conditions that arise in
your own code.

Review

This chapter brought you up to speed on some advanced topics and concepts in
Java that you are likely to use as you develop ever more sophisticated programs.
This includes how to customize your applets by supplying values for your applet
as part of a Web page, how to write methods with the same name but that take a
different set of parameters how to get into the act of initializing your objects by
creating your own custom constructors and how to throw your own exceptions.
There are a few more features of the language that we’ll touch on in Chapter 15,
where we’ll also suggest places for learning more about Java.

What's Next?

You’'ve almost reached the end of your complete tour of the Java language. Before
you take a peek at the remaining language topics in Chapter 15, you should famil-
iarize yourself with how to create Java applications that run apart from a Web
browser. That is the subject of Chapter 14, coming up next.

Chapter 14

Stand-Alone
Applications

So far, all of the programs in this book have been applets. That is, the Java pro-
grams we developed were all meant to run either in a Web browser or in
CodeWarrior’s Applet Viewer. This is not the only way you can write and run a
Java program. There is no requirement that Java programs only run as part of the
Web—only that the computer on which a Java program is running has a Java in-
terpreter. When you run a Java application that is not meant to be run as part of
the Web, it is said that the program runs stand-alone (that is, apart from a Web
browser).

In fact, you can do just about everything (and, in some cases, a little bit more)
in an environment that is not connected to the Web that you can do in an applet
that is part of the Web. For example, some security restrictions are lifted when
running separately from the Web—such as gaining access to the local file sys-
tem—because the browser does not need to guard the gate, as it were. There’s
nothing coming in over the wild and woolly Internet that might be dangerous to
your computer. Everything is running locally on your machine, the programs
exist on your hard drive, and you are in complete control of what’s happening.

You can’t just launch an applet stand-alone, however, without making some
minor adjustments to your program so that it can run without a browser. This
chapter will show you how to make these changes and how to plan out a stand-
alone application.

What Is a Stand-Alone Application?

A Review of the Java Virtual Machine

Stand-alone applications run just like any other application you might be used to
from the Mac. You don’t need a modem, an Internet access provider, a Web
browser, MacTCP, and so on. All you need is a Java interpreter to act as the Java

321

STAND-ALONE APPLICATIONS

Virtual Machine (JVM). Remember, your Java programs are compiled into a ma-
chine language that does not run on any particular chip. Instead, the machine lan-
guage produced by a Java compiler is tailored to a virtual machine—the JVM. The
Java interpreter implements the JVM in software and acts as a translator between
your compiled Java code and your Mac. Different Java interpreters translate be-
tween your program and other environments on which you want to run your Java
program. The JVM is called Metrowerks Java in the CodeWarrior environment.
This is depicted in Figure 14.1.

A Review of the Applet Viewer

With a Web browser, the Java interpreter is built into the browser itself. In the
CodeWarrior environment the Applet Viewer acts as a stand-in for the browser.
The Applet Viewer uses the Java interpreter that is in Metrowerks Java. Even
though you're not running in a Web browser, the Applet Viewer still carries on the
applet life cycle dialog with the applet. That is, the Applet Viewer tells the applet
when to initialize, start, stop, and destroy itself. This is shown in Figure 14.2.

"
sy
Java program
Si npl eDr aw. j ava
i compile #compile
compiled code ready i

to run on the Java
Virtua Machine (VM)

Si mpl eDr aw. cl ass

i run ; run

the Javainterpreter
(implements the VM
in software) Met r oner ks. j ava
¢ translate # trangdlate
your Macintosh L

Figure 14.1 Compiling, running, and translating a Java program on your Mac.

322

WHAT IS A STAND-ALONE APPLICATION?

launch the Java interpreter
and Applet Viewer

v

load the indicated appl et

your applet istold to initialize,
start running, stop running, and

destroy itself

Figure 14.2 Schematic showing how the Applet Viewer carries on the life cycle dialog
with your applet.

Executing a Class

When you write a stand-alone application, you don’t need to extend the Applet
class. In fact, you can execute any class at all. When you run a stand-alone appli-
cation, you don’t use the Applet Viewer because you do not have an applet.
Therefore, your application never receives the applet life cycle method invoca-
tions. So how does your application know what to do and when to do it? You
have to know what to do and when to do it yourself! The only thing the Java inter-
preter tells your program to do is to start running. (We’ll get into how the Java in-
terpreter does this in just a moment.) You must do the rest. This is depicted in
Figure 14.3.

So how does the Java interpreter tell your class to start? The Java interpreter
invokes your class’s nai n() method.

launch the Java interpreter

| load the class you indicate |

| your classistold to start running |

Figure 14.3 Schematic showing how the Java runtime environment loads your class and
tells it to start running.

323

STAND-ALONE APPLICATIONS

The main() Method

You must include a mai n() method for a class if you want to execute that class as
a stand-alone application. This is different from the life cycle methods for applets,
where you could choose not to implement a particular life cycle method if you
didn’t want to (in fact, you could ignore all the life cycle methods and the applet
would still run). However, if you do not have a mai n() method for a class that
you want to execute, the Java interpreter will halt your program. (Only the class
that you run needs to have a mai n() method; any other classes that it uses do not
need to have a mai n() method.) This is depicted in Figure 14.4.

The declaration of the mai n() method is not nearly as simple as thei ni t () or
start () methods for an applet—but then, since it’s the only method that is in-
voked by the interpreter, it has more responsibilities.

First of all, your mai n() method must belong to the class. Why? Because
when you run a class, the Java interpreter does not automatically create an in-
stance of your class, as the browser and Applet Viewer do with your applet. You
can create any objects yourself that you want to, but the interpreter does not try to
guess that this is what you want to do. In fact, stand-alone applications never
have to create objects if they don’t want to! (We'll take a look at an example of this
in a moment.) As you'll recall, to declare a method as belonging to a class, you use
the keyword st ati c

Second, your nmai n() method must be able to accept data as part of launching
the program. This data can be any length at all. The data that can be passed to
your mai n() method is a list of words—in particular, a list of String objects. You

launch the Javainterpreter

|load the class you indicate |

your classistold to start running
when the Javainterpreter triesto
invoke amethod called mai n()

method does|not exist method|exists

|haltwith an error mes&age| |execute mai n() |

Figure 14.4 What happens when the Java interpreter tries to start a stand-alone
application at a method called rmai n().

324

WHAT IS A STAND-ALONE APPLICATION?

already know how to work with a list of strings: You make an array of them. As
you learned in Chapter 12, the way you declare an array is by using square brack-
ets. The way that you declare an array of String objects, then, is by writing
String[]. Your mai n() method must accept an array of String objects as a
parameter.

The two other keywords required by your mai n() method include publi g
which allows mai n() to be invoked from anywhere, and voi d which indicates
that mai n() does not return a value. Here, then, is the mai n() method’s declara-
tion:

public static void main(String[] args) {

}

By the Way
Why the name nmai n()? Where does this come from? The name nai n() is a
holdover from the C language. In C, all programs begin at a block of code
named mai n(). The keywords and parameters are different, but the name re-
mains the same.

Hello, Javal

So now you know enough to write a complete stand-alone application. Let’s write
a stand-alone application that writes the words “Hello, Java!” to the Java Output
window. How do you think you should go about doing this?

First, you need to declare a class. This class does not need to be public
though it often is declared as publ i ¢ It does not need to extend a class other than
object, though it sometimes does. The class can define the one class method it
needs, mai n(). mai n() can then do anything it wants to do, such as writing to the
Java Output window. Here’s the code for a simple stand-alone program:

public class WiteHello {
public static void main(String[] args) {
Systemout.println("Hello, Javal");

}

As you can see, this program ignores the parameter we’ve called ar gs. If the
user executed this application and supplied any data, that data would be ignored.
Notice also that we don’t create an object at all! There’s only one method here,
named mai n(), that belongs to the class. We run the class, the class executes its be-
havior, and then that’s it! The mai n() method comes to an end, and so does the

325

STAND-ALONE APPLICATIONS

326

=|ll=——-— Hellodara.) =——1I=
[#] File Code Data ¥
= & Group 1 0 0 = |
@ Hellodava.java oi o N
w classes zip 0 o [+]
r
2 file(s) 0 0 (£

Figure 14.5 The Hel | oJava. p project window.

program. There’s no applet window sitting around. There’s no other user inter-
face. This program just writes its message to the Java Output window and halts.

Let’s look at the HelloJava program in CodeWarrior and see what happens
when it runs. Go to the subfolder named 14. 01- hel | o, j avain the Learn Java
Projects folder and open the project file Hel | oJava. p The project window will
appear as in Figure 14.5.

Notice that this project window, unlike the project windows for applets, con-
tains only one section, not two. The section missing here is for HTML files. We're
not intending to run this Java program as part of the Web, so we don’t need any
HTML files.

When you compile this source file by selecting Make from the Project menu,
CodeWarrior will generate a file named Hel | oJava. out(Figure 14.6).

The file Hel | oJava. outis a double-clickable icon that will launch the Java in-
terpreter and run your program. Go ahead and double-click this file now to see

sSfI=——— 14.01 - hello, java =———I=
S items 17052 MEB in disk 60.5 MEB availal
T : i

: B :E
Hellodava.p Hellodava.java Hellodava.out B
] EE

Figure 14.6 The subfolder 14. 01 - hel | 0, j ava after compiling the application.

WHAT IS A STAND-ALONE APPLICATION?

Sd=————————— Java Dutput
Executing: jowai —classpath

fBlueHor=za /CHEE20G0 | d/LearnB20Jauwa s 14 0 1820-F20he| 1o, 820j avaHe | lodaw] |
q.out Hel lodawva

Hello, Jawa!
Comp leted{0>

ke

| 2

Figure 14.7 *“Hello, Java!” in the Java Output window.

17

your program run. The result will be that the words “Hello, Java
the Java Output window, as in Figure 14.7.

In addition to the Java Output window, you can also displays a window
called “javai.” To do this, selectFile, New, javai from the Metrowerks Java menu op-
tions at the top of the screen. This window can be used to interact with the Java in-
terpreter and your stand-alone applications. Figure 14.8 shows what this window
looks like when it first appears.

Here’s an example of how you can use this window. If you would like to run
HelloJava again, type “HelloJava” into this window (Figure 14.9) and click the Ex-
ecute button. The words “Hello, Java!” will appear again in the Java Output win-
dow.

will appear in

Jjavai

Figure 14.8 The javai window when it first appears.

Javai

Figure 14.9 Typing “HelloJava” into the javai window to run the application once you're
already in the Java interpreter.

327

STAND-ALONE APPLICATIONS

Warning

By the Way

328

If you make a change to your applet and then recompile it, you'll need to
quit Metrowerks Java and relaunch your application to see the changes
come into effect. Otherwise, Metrowerks Java will keep on running the class
that it loaded originally.

You can also use the javai window to pass parameters to your application
when you execute it. The next section will explain how this is done.

When working with CodeWarrior, you must indicate whether you would
like to create an applet or a stand-alone application when you first create
your project file. There are also preferences you can set that indicate what
kind of files the CodeWarrior compiler will generate. That’s how we got the
double-clickable file to be created for the stand-alone application. For stand-
alone applications, you expect it to behave like any other Mac application,
and so we want to generate a double-clickable icon.

That's also how we generated the compiled class files in their own
folder for applets. For applets, you need compiled class files so that your ap-
plet can be downloaded over the Web.

All of the project files in this book have already been created for you, so
you don’t have to worry about this. For more information on creating new
projects in the full version of CodeWarrior (that is, not the Lite version) and
in setting the preferences for a project, check out the documentation that
comes with CodeWarrior.

Differences Between Applications and Applets

For the most part, everything you’ve learned in this book concerning applets is
the same for applications. This includes defining classes, creating and using ob-
jects, writing and invoking methods, defining and using variables, implementing
flow control, using inheritance, creating constructors, and handling exceptions—
to name just a few of the features of Java that carry over from applets to applica-
tions. It’s still Java, after all, and the language is the same. However, there are a
few subtle differences between applications and applets. This section will point
out some of the more important ones.

DIFFERENCES BETWEEN APPLICATIONS AND APPLETS

The Command Line

Applets are somewhat sheltered from the operating environment because they
run in a browser; applications are executed directly in the operating environment
itself. For example, stand-alone applications are meant to run in an operating en-
vironment such as your Macintosh. They can also run in Windows 95, Solaris,
0S/2, and wherever else there’s a Java interpreter.

In graphical environments, such as the Mac, stand-alone applications can be
created to run when the user double-clicks an icon, as you saw with the HelloJava
application. However, in environments that also allow for command line input,
where the user types commands from the keyboard rather than using the mouse,
applications can also be launched by using typed commands.

CodeWarrior provides a way into this capability by displaying the window
titled “javai.” This is a window that allows you to execute commands by typing
them in and clicking the Execute button. For example, you've already seen how to
execute your application class by typing its name. You can also pass parameters to
your application by using the command line. To do that, you can type the param-
eters you want to pass to your class’s nai n() method after the name of the class
you want to execute. We set up mai n()’s parameter as an array of String objects.
This is exactly how the parameters you supply are passed to mai n(): as String ob-
jects in the string array.

Here’s an example. Remember our NextPrime applet back in Chapter 8? That
applet found the next prime number after an initial starting point. Here is the start
of that applet:

public class NextPrine extends java.applet. Appl et {
public void init() {

i nt startingPoint, candidate, last, i;
bool ean i sPrine;

startingPoint = 19;
How would we rewrite this code so that it is a stand-alone application and so
that it accepts its value for st arti ngPoi ntas a command line parameter? We

would start by writing the following;:

public class NextPrine {
public static void main(String[] args) {

i nt startingPoint, candidate, last, i;
bool ean isPrine;

329

STAND-ALONE APPLICATIONS

330

Now, what should we set st ar t i ngPoi ntequal to? The whole intent here is
to avoid hard-coding the value for st ar ti ngPoi ntand instead use the first pa-
rameter passed to NextPrime. The first parameter passed to NextPrime will be the
first string in the string array. From our discussion of arrays, you know how to ac-
cess this: The first value will be in the variable ar gs, and you can get at it by writ-
ing ar gs[O].

The sample programs section in this chapter shows you how to make the
changes to NextPrime to get this all to work.

The Top-Level Frame

The HelloJava application simply displayed some text in the Java Output win-
dow. It did not allow the user to interact with the application. To do this, you have
to create a user interface. You've already developed user interfaces in Chapter 11,
and everything you learned there applies to creating a user interface for a stand-
alone application. However, there is one important difference between applets
and applications when it comes to user interfaces, and that is where your user in-
terface is displayed.

For applets, this is not really an issue. An applet displays its user interface in-
side a Web browser (or inside the Applet Viewer). This is shown in Figure 14.10.

However, an application has no such place to display its user interface. This
means that the application must create its own place to display its user interface.
How do we go about doing this? To gain insight into this question, let’s think
through how your user interface is displayed in a Web browser. The Web browser
automatically created your applet instance for you. All you had to do was to cre-
ate the user interface objects that went inside it. For stand-alone applications, no
one is creating this place to put your user interface objects. You have to do so
yourself.

Java supplies a class called Frame that you can use as a place to put your user
interface. Frames contain other user interface objects, which is exactly what you
want. What you can do, then, is create your own instance of class Frame, arrange

Web browser

applet

Figure 14.10 An applet’s user interface displayed inside a Web browser.

SAMPLE PROGRAMS

Frame you create

application

Figure 14.11 Your application’s user interface displayed inside a frame your application
created itself.

your user interface objects inside your Frame object, and display the frame. This is
shown in Figure 14.11.

Here are the steps you might follow when creating your own frame in which
to contain your user interface (this assumes that you are still defining an Applet
subclass but want to run this applet as a stand-alone application. This technique is
easily transferable to other types of classes as well):

1. In your applet’s mai n() method, create a new instance of the applet. When
running your applet in a browser, the browser (or Applet Viewer) creates a
new instance of your Applet class for you. If you're running stand-alone, you
have to do this yourself.

2. Invoke your new applet instance’s i ni t () method. Again, the browser nor-
mally does this for you; you must initialize your own applet if you are run-
ning stand-alone.

3. Create an instance of class Frame to contain your applet. In a browser, your
applet is contained within the browser itself. As a stand-alone application,
you have to supply your own container for your applet and then add your
applet to the frame.

4. Resize the frame. The HTML file sets the size for the applet; without an
HTML file, you still must set the size in your code.

5. Finally, make the frame display itself on the screen.

We'll take a look at an example of all this in the next section.

Sample Programs

In this section, we'll take two programs that we’ve seen before—NextPrime and
SimpleDraw—and turn both of these applets into stand-alone applications.

331

STAND-ALONE APPLICATIONS

332

NextPrime.p

Open the subfolder 14. 02- next pri mein the Learn Java Projects folder. Open
Next Pri nme. pand select Make from the Project menu. This time, instead of dropping
the HTML file onto the Metrowerks Java icon, double-click the file named Nex-
t Pri ne. out This will run the stand-alone application.

The Java Output window will appear. Display the javai window by selecting
File, New, javai from the Metrowerks Java menu options at the top of the screen. At
first, nothing will seem to have happened. That's because the application is set up
to halt gracefully if no data is supplied for it. So, let’s run it again, this time supply-
ing it with data. In the javai window, type Next Pri me 19and click Execute A mes-
sage will appear in the Java Output window indicating that the next prime is 23.
Change the 19 in the javai window to 153 (so that it reads Next Pri ne 153 and
click Executeagain. A second message will appear in the Java Output window indi-
cating that the next prime is 157. This is shown in Figure 14.12.

This version of NextPrime is set up to take its starting point as a command
line parameter, allowing you to easily rerun the application to find a different
prime number. Let’s check the source code to see how we do this.

Stepping Through the Source Code

Open Next Pri me. j avaFirst of all, you'll notice that this class no longer inherits
from Applet. In fact, it doesn’t inherit from any other class (other than Object).
We've also removed the i ni t () method. In its place, we’'ve defined a mai n()
method:

public class NextPrine {
public static void main(String[] args) {

We then define the same variables as before:

SO=————— Java lutput

Executing: jovai -classpath
fBlueHorse /CHEE20GD | d/Learn@20Java f 14 02820-820nex tB20pr ima MextPr ime . out MextPrime
Comp | etedi0l

Executing: jowai MextPrime 19
The next prime after 19 i=s 23
Comp | eted{0>

Executing: jowai MextPrime 1532

The next prime after 153 is 157
Comp | etedc0l

=)

Figure 14.12 NextPrime, when run as a stand-alone application.

SAMPLE PROGRAMS

int startingPoint, candidate, last, i;
bool ean i sPri ne;

This time, however, instead of setting st ar t i ngPoi ntto 19, we attempt to re-
trieve it from the command line parameters. Before grabbing this value, we might
want to check to make sure the user actually supplied a command line parameter
in the first place! Otherwise, imagine that the user did not supply a command line
parameter. In that case, the array would be empty—it would have a length of 0. If
we tried to access a value in the array’s first position, we would be looking be-
yond the end of the array, which would cause Java to throw an exception called
ArrayIndexOutOfBoundsException, which would cause our program to come to
a halt with an error message. So, before accessing the ar gs array, we might want
to check to make sure the array does in fact contain one element. If it doesn’t, we
can return right away, which would cause the program to halt without an error
message. Here’s how we could write this:

if (args.length == 1) {

/1 try accessing the first command |ine paraneter
} else

return;

If ar gs. | engt hdoes equal 1, then there is a command line parameter. Each
command line parameter is a string object. This means, if we want to assign the
first command line parameter, which is a string, to st arti ngPoi nf which is an
i nt, we must first convert the string to an i nt. One way to do that is to create a
new instance of class Integer based on the value in the string and then use the in-
teger’s instance method t ol nt () to return an i nt data type. Since the constructor
for the Integer instance might throw an exception if the string does not contain a
valid integer, you have to be prepared to catch the exception (if you want to pre-
vent your program from halting with an error message). Here’s the code:

try {

Integer integer = new Integer(args[O0]);
startingPoint = integer.intValue();

} catch (Exception e) {

return;

333

STAND-ALONE APPLICATIONS

334

Alternatively, you could also use | nt eger. parsel nt (ps we saw in an ex-
ample in Chapter 12. The rest of NextPrime is the same as what you saw before.

SimpleDraw.p

Displaying a user interface in a stand-alone application requires providing a frame
for the user interface. We can write an applet just as usual, but instead of relying
on the browser to tell us what to do, our mai n() method can do this work itself.
Run the SimpleDraw application that is in the subfolder 14. 03- st and al one
in the Learn Java Projects folder. First open Si npl eDr aw. pand select Make from
the Project menu. You can run this by double-clicking the file Si npl eDr aw. out.
You can interact with SimpleDraw just as you're used to. Create new shapes
by clicking in the applet; change the type of shape and color to draw in by using
the choice lists. Notice that there is no Applet Viewer. This application is truly
running separately from the Applet Viewer. Let’s check out the source code.

Stepping Through the Source Code

Open Si npl eDr aw. j avaThe only thing that has changed since you saw this pro-
gram last is the addition of a mai n() method. We're still creating an applet; we
still have an i ni t () method; and so on. Let’s take a look at this mai n() method
and see what it does.

First, mai n() creates a new instance of the applet. Remember, nmai n() is a class
method. When mai n() starts executing, there is no instance at all; all that exists is
the class itself:

public static void main(String[] args) {
Si npl eDraw sd = new Si npl eDraw() ;

Since there is no Web browser or Applet Viewer invoking the new instances
i ni t () method for us, we have to do this ourselves:

sd.init();
Since a Web browser or an Applet Viewer is not supplying a place to display
our applet, we have to create our own place. We can create an instance of Java’s
class Frame to contain our applet. One of the constructors of class Frame allows

us to supply a title for this window; we’ll use that constructor here:

Frane f = new Franme("Si npl eDraw');

Frames use a type of layout manager called BorderLayout. As mentioned in
Chapter 11, BorderLayout arranges its user interface components according to di-
rections: North, South, East, West, and Center. We'll put our applet smack-dab in
the center:

f.add("Center", sd);

For applets, the HTML file supplies the default size in its wi dt hand hei ght
keywords. For stand-alone applications, we have to supply this size ourselves:

f.resize(200, 100);

The last thing to do is display the frame, which makes our applet appear as
well since it is contained within the frame:

f.show();
}

As mentioned, the rest of the program is the same. This nai n() routine does
everything the Applet Viewer did, and so our application can run stand-alone.

Review

This chapter outlined how to create applications in Java that do not rely on Web
browsers. You've seen how you must define a mai n() routine for stand-alone appli-
cations. In fact, you can execute any class at all—as long as it has a mai n() routine.

mai n() is a class method. If you want to interact with instances of your class
(for example, if you want to invoke instance methods), you must create an in-
stance of your class and use that for invoking methods. To display a user inter-
face, you have to take over the responsibilities of a Web browser in nai n() by
supplying a place to display the applet, adding your applet to this place, sizing
the window that will appear, and then displaying the window (and so displaying
your applet inside it).

What's Next?

At this point, you've learned the basics of Java and explored its more advanced
topics. The next chapter highlights some concepts that are important to Java and
offers some insights into how you can continue your pursuit of Java excellence.

WHAT'S NEXT?

335

Chapter 15

Where Do You Go
from Here?

Congratulations! By learning Java, you’'ve begun to travel the road to great Web
sites, fun programming, and a rewarding career as a Java programmer. Now that
you've started your journey, we’re not just going to drop you off in the middle of
nowhere! This chapter will provide a link to the rest of the great, wide world of
Java. In particular, you'll learn about a number of advanced concepts concerning
Java and where you can go to find out more information about them.

You've come a long way since Chapter 1. You started your journey learning
about a Java development environment called CodeWarrior and then waded
through the concepts of Web programming and how to solve problems in Java
using classes, objects, and methods. You developed very simple applets at first,
but then, as you learned about variables, methods, and the applet life cycle, you
were able to customize your applets to do things. Once you learned about objects
and Java’s classes, you were able to put together user interfaces that allowed users
to interact with your applets. By learning about different ways of working with
data, you were able to complete these applets. Finally, you learned a few ad-
vanced topics and then took a look at what you needed to do to create applets that
ran stand-alone, apart from a Web browser.

What more is there? There are lots of details, and this chapter will show you
where to look to dig down deeper. Having gained a strong footing in the lan-
guage, you should feel confident about exploring any of these areas and learning
many of the details that are not quite appropriate for a beginning book on Java.
Some of the topics presented here might fill up entire books on their own, so we
can’t go into much more detail other than to point out that they exist and offer
some links to where you can learn more about them. Here’s the path you should
take for further exploration:

e Learn about interfaces.

¢ Define your own packages.

337

WHERE DO YOU GO FROM HERE?

338

e Learn about threads.

¢ Learn how Java works on the inside.

¢ Read the HTML files that describe Java’s packages.
¢ Explore Java’s packages.

e Study other resources.

e Experiment with a multithreading applet.

Appendix G also offers a path to your continuing education by listing addi-
tional resources where you can find out more about Java as the language develops
and finds uses all over the Web. You might also want to attempt to create your
own programs that implement the features mentioned here. One of the best ways
to learn the language is to experiment. Try them out, play around with them, and
push them to their limits to learn what these features are all about.

Learn about Interfaces

Interfaces define a set of behavior for classes to implement. The idea behind an
interface is that different classes might share the same characteristics, even if these
classes are not part of the same class hierarchy.

For example, you might have a class hierarchy for a Navy application that de-
scribes a whole bunch of jets, destroyers, aircraft carriers, tug boats, and so on.
Some of the more modern of these aircraft and ships might be nuclear powered;
the rest, diesel powered. How can you give different classes of crafts the roles and
responsibilities of a nuclear-powered craft without building it right into a class?
You can create an interface. Figure 15.1 provides an idea of how an interface can
be sprinkled into your class hierarchy.

r— "1
= nuclear powered

| jet | | propeller|

Ir —1

T _
|fighter| iboiber_L |awac| LaiErafi carLierJI destroyer

Figure 15.1 Example of how an interface can be sprinkled into a class hierarchy.

DEFINE YOUR OWN PACKAGES

This class hierarchy has the characteristic of “nuclear powered” sprinkled
into different parts of the hierarchy. Only those classes that have this characteristic
are nuclear powered; the rest of the classes are normal. Those vehicles that are
nuclear powered must implement the specific behavior of what being nuclear
powered means for them.

An interface is somewhat similar to a class, except that it can be shared among
different classes. Interfaces only define method names, parameters, and return
values; they do not provide any behavior. The specific behavior for a method de-
fined in an interface is left up to the class that implements that interface. Interfaces
can define variables, but these variables must be constants.

Java provides a number of interfaces, and you'll run across these as you con-
tinue programming in Java. For example, one of the most common interfaces de-
fined by Java is called Runnable. This interface defines a method called r un() but
does not supply any code for r un(). Instead, if your class implements the Runnable
interface, your class must supply a method for r un() that tells r un() what to do.

The way you declare a class as implementing an interface is to use thei npl e-
ment s keyword. For example, to indicate that your applet implements the Run-
nable interface, you can declare your applet like this:

public class MyAppl et extends Applet inplenments Runnable {
/'l your applet code goes here

public void run() {
/'l your code for run() goes here

}

This particular interface (that is, Runnable) is used with multithreading, as
touched on later in this chapter. For more information concerning interfaces,
check out Java Essentials for C and C++ Programmers, written by Barry Boone and
published by Addison-Wesley.

Define Your Own Packages

All of Java’s classes come in packages, and you can do the same thing with your
own classes—that is, you can group your classes into packages as well. This can
help you share classes among different applets that you write, just as Java’s
classes are shared among applets.

339

WHERE DO YOU GO FROM HERE?

340

What Are Packages?

Packages are Java’'s way of grouping together related classes. The advantage of
packages over a bunch of individual classes is that packages are easy to share
among applications. If you have a collection of classes you would like to share be-
tween two or more applications, it’s very useful to place all of these classes into a
package and then simply share the package.

For example, you might have two applications that could make use of the
Square and the Rectangle classes discussed in this chapter. One of these applica-
tions might be used for drawing, and the other might be used in an application
that teaches geometry to students. Figure 15.2 shows how each application might
be organized without packages.

Rather than duplicating the classes between the applications, you could split
out the classes for the square and rectangle (as well as any other shape classes
you've defined), place these classes into a package called “shapes,” and then
share this package between the two applications. This would allow you to use the
same classes in both applications, without duplicating any work, in a way that’s
very easy to manage. Figure 15.3 shows this organization.

drawing application Learn Geometry on the Mac
| Drawing class| Teacher class
Square class Square class
Rectangle class Rectangle class

Figure 15.2 Duplicating classes for different applications.

drawing application shapes package Learn Geometry on the Mac
Teacher class
- Square class (———

- Rectangle classTf—b

Figure 15.3 Sharing classes between applications.

LEARN ABOUT THREADS

Creating Packages

To indicate that the classes in a particular file belong to a particular package, you
must use the packagekeyword. For example, the following line at the top of a file
indicates that all of the classes in that file should belong to the package shapes:

package shapes;

When you want to use a class in another package, you must import it, just as
you import Java’s classes, by writing

i mport shapes. *;

Learn about Threads

All of the programs in this book work by asking the computer to do one thing at a
time. This is how most programs in other languages work, and you can write
many great Java programs like this Java contains an advanced feature, however,
that makes it easy to ask the computer to do two or more things at the same time,
and this makes Java much different from other languages (Figure 15.4). This sec-
tion will introduce you to this concept and to Java's capabilities. We won'’t go into
too much code here, but, by the time you finish this section, you'll at least under-
stand what Java means by multithreading.

Knowing When to Do More Than One Thing at a Time?

Many programs are perfectly content to do one thing at a time. The SimpleDraw
applet is happy enough responding to user input and displaying squares and cir-
cles. The Triangle applet is content to calculate the area of the triangle when the
user clicks the “area” button.

What would happen if we changed SimpleDraw to be called SimpleDraw-
Blink? Perhaps such an applet would “blink” the squares and circles in the applet.

do this
now do this at the same time!
and don't forget about this!

Figure 15.4 Multithreading in Java: asking the computer to do more than one thing at a
time.

341

WHERE DO YOU GO FROM HERE?

342

For example, you click in the applet, and a red square appears. Every second, it
changes to yellow for a quarter of a second and then redraws itself in red. You
click again, and a blue circle appears. Every second, it changes to yellow for a
quarter of a second and then redraws itself in blue. Soon, your applet is filled up
with blinking shapes, all blinking to yellow at different times.

Other than becoming hypnotized by such an applet, we would run into some
trouble if we wanted all the shapes to start blinking independently of one another.
If the applet managed each shape’s blink, we would have to enter some kind of
loop, draw each shape in yellow, then loop back, redraw the shape in its original
color, and so on, forever—and still we would probably end up with them all
blinking in unison, which is not what we want. In addition to this, when would
we respond to user input if all we did was draw and redraw these shapes? Would
we be using system resources correctly?

Difficult questions indeed, and a problem tailor-made for threads.

What Is a Thread?

A thread is like a miniprogram in that it maintains its own thread of execution or
thread of control. Your program can use as many threads as it wants to; each
thread will do its own thing, independently of the others. For example, you could
have a thread that controls how to draw each shape. Each thread would decide
when to blink each shape. You could create a thread and assign it to the first red
square you create; you could create a second thread and assign it to the blue circle
you create next. Each time a new shape is created, you create a new thread for it as
well.

In this scenario, we’ve assigned each shape its own miniprogram, and each
program executes independently of the other and at the same time. SimpleDraw
itself does not have to go around blinking each shape; the threads and shapes
working together make this happen. This is depicted in Figure 15.5.

Creating and Starting a Thread

Java supplies a class called Thread. One way to work with threads is to create
your own subclass of the Thread class. By creating your own subclass, you can
provide behavior for the thread that will make it do what you want.

All you have to do to create a new thread is to create an instance of your
thread subclass. To start a thread going, you need to give it a little nudge. You tell
it to start by invoking its st ar t () method.

LEARN ABOUT THREADS

SimpleDraw creates
the shapes and threads

Y1

.
9

blink square

Figure 15.5 Example of how threads and shapes work together to make shapes blink.

Telling a Thread What to Do

How does a thread know what to do? You have to tell it! You can tell your thread,
for example, to redraw a particular shape. You can tell your thread to perform
some animation. You can tell your thread to access a Web page while the user is
busy interacting with the application. Remember, threads are miniprograms—
they can do whatever you tell them to do.

The way you tell a thread what to do is by supplying a method called r un().
Once you start your thread by invoking its st ar t () method, Java will invoke its
run() method for you, as shown in Figure 15.6.

You can also create a thread without subclassing it and indicate to Java that
you want another class, such as your applet, to provide a r un() method for the
thread. You would then implement a r un() method in your applet to provide the
behavior for the thread and declare your applet as implementing the Runnable
interface.

Once the run() method begins, it will continue to execute until one of two

things happens:

thread
start() - run() {

}

Figure 15.6 Starting a thread, which invokes the thread’s r un() method.

343

WHERE DO YOU GO FROM HERE?

344

Detail

1. Java reaches the end of the code in the thread’s r un() method. If r un() exits,
your thread will no longer be doing anything. Many times, threads enter an
infinite loop so that they run forever (that is, until the thread is destroyed,
usually because the user quit the applet). This is one of the few times when
you want to write an infinite loop.

2. Someone puts your thread to sleep. Who might do this to your thread? Any
object can put a thread to sleep—including the thread itself! If your thread
goes to sleep, you can always wake it up again, and it will continue along its
merry way. There are a few different methods to make your thread sleep and
a few corresponding methods to make your thread wake up.

One way to make a thread go to sleep is for the thread to invoke its own
sl eep() method, which waits the indicated number of milliseconds before re-
awakening. The sample program in this chapter uses this technique. For other
techniques for putting a thread to sleep and reawakening a thread, check out the
different methods associated with class Thread in the Java API (application pro-
gramming interface) documentation.

Synchronizing Threads

Traditionally, with other languages, threads can be a nightmare. Having all these
threads running around doing things is a little like having dozens of ants running
around, each one doing its own task. How do you control all these little critters?
How do you stop one ant (or, thread) from doing something that another one is
doing at the same time?

This is a difficult problem in other languages because other languages were
not developed with the idea of threads in mind. In Java, however, this idea is built
right into the language. Java supplies two keywords (the primary one being the
keyword synchroni zedl that asks Java to take on the responsibility of making
sure that threads don’t step on one another’s toes. If you ever see a method de-
clared as synchr oni zegdthis means the author of the code wanted to make sure
that only one thread could invoke that method at a time. If another thread comes
along and also wants to invoke that method, it must wait patiently until the first
thread is done and the method exits.

To be complete about this, there’s also a keyword, called vol ati | ¢ that is
rarely used. This keyword ensures that if a thread changes a variable that
another thread is using, that other thread will see the change.

LEARN HOW JAVA WORKS ON THE INSIDE

The Thread Life Cycle

There’s also a thread life cycle, which applies to the Thread class; in particular,
threads can start and stop. Very often, you will put your thread’s life cycle in sync
with your applet’s life cycle: When your applet starts, you should start your ap-
plet’s threads; when your applet stops, you should stop your applet’s threads.

There are some good explanations of multithreading on the Web at JavaSoft’s
site, as well as applets you can run at this site to see examples of multithreading in
action. Also, Barry Boone’s Java Essentials for C and C++ Programmers, from
Addison-Wesley, describes multithreading, including the synchr oni zecand vol -
ati | ekeywords, in much more detail.

Learn How Java Works on the Inside
Garbage Collection

The applets in this book all created a number of objects. We kept track of almost
all of these, from shapes to employees. Sometimes, however, you'll create objects
only temporarily, and then you won’t have need or use for them again. As we
mentioned earlier, objects take up memory in your computer. If you create an ob-
ject and then don’t use it again, does the object continue to sit in memory, using
up space unnecessarily?

Not in Java. Java provides a mechanism called garbage collection. When
your program can no longer access a particular object, Java has ways of finding
out. If it discovers an object that you won’t be using any more (because you no
longer can access it from your program), it frees up the memory used by that
object.

It’s not strictly necessary to know about garbage collection to use Java, but it
does enhance your understanding of what’s happening behind the scenes. Check
out the specifications for the Java Virtual Machine and the documentation for the
Object class for more information concerning what Java’s garbage collection is all
about.

The Java Virtual Machine

You know what the Java Virtual Machine (JVM) does; one advanced area of study
is learning how the JVM works. For example, the JVM does not allow any code to
execute that contains a virus. How does it know? What do the machine language
instructions for the JVM look like? What can you learn about Java by knowing
these details?

345

WHERE DO YOU GO FROM HERE?

346

The answers to these and many more questions can be found in the specifica-
tions for the Java Virtual Machine. If you really want to try to figure out what's
going on behind the scenes, you might want to gain an overview of the JVM.

Explore Java’'s Packages

You’ve now seen just about all there is to know about the Java language. Java is
much more than a language, however. Java comes with lots and lots of predefined
classes for you to use in your own programs. We've already seen many of these,
from String to Applet to Vector to Math. This section provides an overview of
some of the classes you might want to investigate first as you continue learning
about what Java has to offer. For more information on the classes mentioned here,
check out the HTML files containing the Java package information.

Understanding the HTML Files

First, let’s look at the structure of the HTML files that contain Java’s class docu-
mentation. These files can be found on your CD; you can use a Web browser to
view them. (Check with your development environment for more information
about what’s available on the CD.) You can also go to the JavaSoft Web site con-
taining the most up-to-date documentation (see Appendix G).

The documentation files are arranged in a hierarchy. The first level is a listing
of all of Java’s packages that are available for you to use in your own Java pro-
grams. This is shown in Figure 15.7

By clicking on one of these hypertext links (say, j ava. | ang for example),
you'll go to a listing of the classes that are found within this package. The lang
package contains lots of classes that are at the heart of Java. The beginning of the
listing of classes in the lang package is shown in Figure 15.8.

The top part of this listing presents the interfaces that are defined in this pack-
age. The interfaces are followed by the classes. To learn more about an interface or
a class, click on it to view a page describing all the variables and methods for that
class.

The top part of the class’s detailed information shows where this class fits into
Java’s class hierarchy. For example, clicking on | nt eger displays the information
shown in Figure 15.9.

If you’d like to navigate to an ancestor class, simply click it. For example, you
can click j ava. | ang. Nunber j ava. | ang. Obj ectin the display shown in Figure
15.9 to go to information about the Number or Object class.

Beneath this hierarchy information, you’ll find the complete definition for the
class, as well as documentation concerning what this class is all about. (You can
see from this HTML file that the Integer class is defined as f i nal, which means it
cannot be subclassed.)

EXPLORE JAVA’'S PACKAGES

Java Packages

jara, lang
Package that contains eszential Jaswa clazses | including nomerics, stings, objects,
compiler, runtime, security and threads. Unlike ather packages, java. lang iz amtomatically
imported into esversy Java program.

jasra. ufl
Package containing mizscellaneous vility classes, including seneric data stachies, settable
hits class, ime, date, sting manipulaton, random nomber generation, swstem properties,
notification, and enmmeration of data stchies.

Package that provides a get of inputand output streams 10 read and write data o files,
strings, and other sources.

jawra, et
Package for netwrork support, including TTRLs, TCP sockets, UDE sockets, IP addresses
and a hinary-to-text converter.

java.applet
Package that enables constouction of applets. Italso provides information abont an applet's
parent docwment, about other applets in that document, and enables an applet 1o play
andin.

java.awt
Package that provides nser interface features such a2 windows, dislog boxes, bhuttons,
checkboxes, lists, menns, scrollbars and fext fields. (Abstract Windowr Toolkit)

jara. awrt inage
Package for managing image data, such as the seting the color model, cropping , color
filtering , setting pixel walues and grabbing snapshots.

jasa. awt. peer
Packagze that connects AW T components 1o their platform-specific implementation (auch a3
Mofif widgets or Microsoft Windows contools).

Figure 15.7 The index of Java's packages as found at the JavaSoft Web site.

The next part of the HTML file is divided into two broad sections. The first
section provides indexes for the variables, constructors, and methods. Each entry
in this first section jumps to the appropriate spot in the second section, where
you’ll find the detailed information for a variable, constructor, or method. For ex-
ample, Figure 15.10 shows the Variable Index for the Integer class.

If you click one of these hyperlinked variable names, you'll jump to the part
of this same HTML document that defines these variables. This is shown in Figure
15.11.

You can tell by looking at the definitions for the variables named M N_VALUE
and MAX_VALUBRhat they cannot be changed—that is, they are constants by virtue
of being defined as fi nal. Since they are also defined as st ati ¢ they are class
variables, and you can access these variables by writing | nt eger . M N_VALUBNnd
I nt eger . MAX_VALUE(The values for these constants are given as hexadecimal
values in the documentation. In base 10, these values are 2,147,483,647 and —
2,147,483,648.)

After the Variable Index comes the Constructor Index. The Constructor Index
lists the constructors defined by the class. And finally, following the Constructor

347

WHERE DO YOU GO FROM HERE?

Figure 15.8 A listing of the classes within the lang package.

Figure 15.9 The definition for the Integer class, including a simple diagram of where the
Integer class fits into Java’s class hierarchy.

348

EXPLORE JAVA’'S PACKAGES

Variable Index

e MAX YAILUE

The maximum walue an Integer can hase.
+ MIH YALUE

The mindmoun swalue an Integer can hasve.

Figure 15.10 The Variable Index for the Integer class.

Index is the Method Index. As with all of the HTML documentation, click any link
to find out more about a variable, constructor, method, or parameter. Figure 15.12
shows an example of what a typical method definition looks like. This definition
shows the method declaration, including all its keywords and parameters. The
details for the method indicate the meaning of the parameters and return values
and indicate which method it is overriding, if any.

Another convenient aspect to the documentation is an alphabetical index. If
you need to find a particular method and are not sure what class to go to, you can
use this index to look up variables and method names alphabetically. You can
access the index by clicking on | ndex at the top right of the documentation (Fig-
ure 15.13).

Variables

@ MIN YALUE

public final static ink HOIH TALTE

The mindmmm walue an Integer can have, The lowest mindnom walue an Integer can have i3
QzE0000000,

@ MAK VALUE
public final static int H&X_TALTE

The mascimmm walue an Infeger can hawe. The greafest masimmm walue an Integer can hasve
iz O PREFEEAT.

Figure 15.11 The definitions for the variables M N_VALUE and MAX_VALUE.

349

WHERE DO YOU GO FROM HERE?

@ equals
public boolean eguals(0bject objl

Compares this object 1o the specified object.
Parameters:
0hj - the object 10 compare with
Retorns:
true if the objects are the same; falze otherwize.
Owverrides:
equals in class Dhject

Figure 15.12 The equal s() instance method for the Integer class.

That brings you to a large document listing everything in alphabetical order.
The top part of this index is shown in Figure 15.14. Simply click on a variable or
method name to jump right to its definition.

By the Way
The original Sun JDK (Java Developer’s Kit) had a feature that automatically
produced nicely formatted HTML files containing documentation for your
source code. When the tool that generated these HTML files read your
source files, they sought out comments that started with /** and added
these to the HTML documentation files. For example, you could write

[/ ** Shapes provide a commbn ancestor for the circle and square.
*/
abstract cl ass Shape {

/1 definition for the Shape cl ass here

}

and these comments would be added to the HTML file automatically gener-
ated for you that contained your class’s documentation.

It's likely that other development environments will implement this
documentation tool as well. Check the documentation with your develop-
ment environment for details.

Index

Figure 15.13 Clicking the | ndex link to access an alphabetical index for the
documentation.

350

EXPLORE JAVA’'S PACKAGES

Index of all Fields and Methods
A

ABORT. Static varable in interface java.awt. image . InareObaerver
Ao image wwhich wwas being tracked asvnchronously was aborted before production was
coiplete.
ABORTED. Stafic sariable in class java.awt. MediaTracker
Flag indicating the download of some media was aboted.
abz{double). Static method in clasz java. lang . Math
Returmns the absolute double salvue of a.
abz{float). Statc method in class java. lang . Math
Returns the absolute float walue of a.
abs{int. Ztatc method in class jawa. lang . Math
Retmins the abzsolute integer walue of a.
abs{long). Statc method in class java. lang . Math
Remins the abzolute long walue of a.
AbstractMethod ExTor). Constoctor for class jasra. lang . AbstractMethod Eror
Constcts an AbstractiMethod Exmor with no detail message.

Figure 15.14 The top part of the Index of all Fields (that is, variables) and Methods.

Spend some time looking around these class documentation files. They’ll provide
many insights into how Java is put together, and you’ll learn about lots of classes
you can use in your own applets. The next few sections provide an introduction to
what you’ll find in these packages.

The awt Package

With the awt (or “abstract windows toolkit”) package, you can create very sophis-
ticated graphical user interfaces that run on any platform. The classes and meth-
ods in this package will allow your applet to interact with the user and will make
your applet sparkle.

You've already created some user interfaces in this book, and what you've
learned has taken you far. You can also generate much more complex user inter-
faces with Java than you’ve created up to this point. And, as more graphical de-
velopment environments emerge, you'll be able to create user interfaces simply
by arranging objects on the screen. Soon, you may not even realize what classes
you're using, and creating an interface will be a matter of “drawing.” None-
theless, it’s always helpful to know what you're doing; working with Java’s awt
classes directly can be very educational when learning what makes Java tick.

Some of Java’s classes that will help you develop more complex user inter-
faces include

e Panels, which contain other user interface elements inside them.

351

WHERE DO YOU GO FROM HERE?

 Frames, which are top-level windows with a title.

e Dialogs, which are windows that take input from the user.

These are all types of Containers. The Container class defines user interface
elements that contain other user interface elements. In addition to all the other
user interface classes we’ve already covered (such as TextFields, Labels, and But-
tons), the awt package also defines

e Scrollbars, which allow the user to scroll the contents of a window.

e TextAreas, which display multiple lines of text and can be used to display or
edit text.

e Menus, which are choices in MenuBars.

e Canvases, which you can subclass to create your own custom components.

These are all types of Components. The Component class defines things with
which the user can interact. The JavaSoft Web site has a number of examples of
applets that create user interfaces. You’ll also find some examples on the CD that
comes with CodeWarrior.

The net Package

The net (or “network”) package contains classes for communicating over net-
works, including the Internet and the Web. You can use all sorts of great network-
ing classes by using the net package, including

e URLs, which encapsulate Universal (also sometimes called Uniform) Re-
source Locators and allow you to get a file or open a connection to the URL
simply by creating this object and specifying an Internet address.

* Sockets, which handle low-level connections between a computer and a net-
work.

e ContentHandlers, which construct an object based on data read over the
Internet.

The io Package

The io (or “input/output”) package contains classes that support reading and
writing data to files. These classes include

352

STUDY OTHER RESOURCES

* Files, which represent a file stored in a computer.
* InputStreams, which help you to read incoming data.

* OutputStreams, which help you to write outgoing data.

The lang Package

The lang (or “language”) package defines many classes that are at the core of Java.
Many of these classes support keywords that are part of the language itself. For
example, Exceptions are used with the try, cat ch and t hr owkeywords. Threads
are used with the synchroni zedand vol at i | ekeywords. Objects are used with
the newoperator. Some of the key classes in this package include

* Exceptions, which are used to signal and handle error conditions arising
when your code executes.

e Integers, Longs, Floats, and Doubles, which provide behavior for their corre-
sponding data types.

* Objects, which support all base-level object capabilities, such as the ability to
create and destroy objects.

e Strings, which maintain character data and provide methods for searching
and manipulating the text they contain.

e Systems, which allow access to the functionality of the operating environment.

Study Other Resources

Other than the HTML files, what else is there? Where to start? There are so many
of educational resources out there, especially on the Web. There are news groups,
mailing lists, corporate Web sites from Java licensees, “official” Java Web sites
from JavaSoft (Sun’s spin-off company now responsible for the Java language),
home grown Web sites by Java fans, and many other sites that use Java without
calling attention to the fact that they are using Java—their Java applets are just
part of the Web page.

There are magazines devoted to Java. Some of these are Web based; some are
available at your newsstand.

There are also many good books available, and you’ll find, as you probably
have already, that you have lots to choose from on the bookstore shelves. You're
now ready for an intermediate book (or perhaps even an advanced book, if
you've gone through the exercises in the appendixes), so definitely pick up a ref-
erence to the Java language if you plan to continue on.

All of these resources, and more, are listed in Appendix G.

353

WHERE DO YOU GO FROM HERE?

354

Sample Program

Even though we just scratched the surface of multithreading, we’'ve included a
sample program that implements the SimpleDraw applet so that each shape actu-
ally does blink, just as we described in this chapter.

SimpleDrawBlink

Open the subfolder 15. 01- t hr eadsin the Learn Java Project folder. Open Si m
pl eDr aw. pand select Make from the Project menu. Run the applet by dropping the
Si npl eDr aw. ht nifile onto the Metrowerks Java icon.

Interact with the SimpleDraw applet in the usual way. You'll soon notice that
all the shapes start blinking—and generally not at the same time! When you’re
done playing with this applet, quit the Applet Viewer. Let’s take a look at the
source code.

Stepping Through the Source Code

Open Si npl eDr aw. j avaHere are the changes we’ve made from the version
you’ve come to know and love.

1. We renamed the vector object from dr awnShapesto t hr eads Instead of keep-
ing track of the shapes, we’ll create threads and keep track of them instead.
Each thread, in turn, will keep track of and control its own shape:

t hreads = new Vector();

2. We created a new class, a subclass of Thread called BlinkThread. Here’s how
we defined this subclass (the r un() method is coming up):

class BlinkThread extends Thread {
static G aphics g;
Shape s;

Bl i nkThr ead(Shape s) {
this.s = s;

}

public void run() {
/1 we'll supply the code in just a nmonment

}

SAMPLE PROGRAM

3.Ini ni t (), we find the graphics object that is used by the applet. We'll keep
track of this object in a class variable in BlinkThread:

Bl i nkThread. g = get Graphi cs();

4. We removed the pai nt () method from the applet. Now, each thread invokes
a shape’s draw method itself when it finds the shape should be redrawn.
You’ll see this in the r un() method for the thread.

5. When the user clicks the mouse, the applet creates a new instance of Blink-
Thread and assigns it the shape just created. It does this by supplying the
shape as a parameter to a custom constructor we’ve created for this Blink-
Thread class. The applet then starts the thread by invoking its start ()
method: and adds the new thread to the Vector instance.

t = new BlinkThread(s);
t.start();
t hreads. add El enent (t);

6. The applet supplies a start () and st op(), destroy() methods. When the
browser starts or stops the applet, the applet suspends or resumes each
thread, as appropriate. The applet also stops each thread for good when the
applet itself goes away:

/** Resunme all the threads when the applet starts. */
public void start() {

Bl i nkThread t;

i nt numrhr eads

nunThreads = threads. size();
for (int i 0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.resune();

}

/** Suspend all the threads when the applet stops. */
public void stop() {

Bl i nkThread t;

i nt numrhr eads;

nunrhr eads
for (int i

t hreads. si ze();
0; i < nunThreads; i++) {

355

WHERE DO YOU GO FROM HERE?

356

t = (BlinkThread)threads. el enent At (i);
t.suspend();

}

/** Stop all the threads when the applet stops. */
public void destroy() {

Bl i nkThread t;

i nt nunThr eads;

nunThreads = threads. size();

for (int i =0; i < nunThreads; i++) {
t = (BlinkThread)threads. el enent At (i);
t.stop();

}

}

7. Each shape defines an additional draw method that draws the shape in yel-

low, called dr awBl i nk() For example, here’s the dr awBl i nk()method for the
circle (the square’s dr awBl i nk()method is similar):

voi d drawBl i nk(Graphics g) {
g. set Col or (Col or.yel | ow) ;
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}

8. And finally, here’s the moment you’ve been waiting for: the r un() method for

the BlinkThread instances. This method loops forever. It draws the shape in
yellow and then goes to sleep for a quarter of a second (250 milliseconds).
When it wakes up, it draws the shape in the shape’s defined color and then
goes to sleep for a full second (1000 milliseconds). This sequence, repeating
endlessly, makes it appear that the shape is blinking:

public void run() {

// don't ever exit the thread
while(true) {

try {
s. drawBl i nk(Qg);

sl eep(250);

s.draw(g);
sl eep(1000);

} catch (Exception e) {
}

}

Each time the user clicks the mouse, the applet creates a new shape and a new
thread, assigning the new shape to the new thread. Each thread, then, keeps track
of one shape object. Since threads are all running at the same time, independently
of the other, each thread’s r un() method is executing simultaneously with all the
other threads. Each thread is telling the shape for which it’s responsible to draw in
yellow and then to draw in its original color. This makes it appear that each shape
is marching to the beat of its own drummer—which is exactly what each shape is
doing, blinking in time with the beat of its own thread.

You can investigate this applet and the source code further to get a sense of
what’s going on. Try altering the times each thread goes to sleep. Try writing mes-
sages to the Java Output window in a thread’s r un() method.

Threads are a complex topic, and they’re used frequently in Java applets.
Now that you’ve been introduced to them, you can start to find your way around
what they’re all about by reading over the available documentation and by study-
ing other applets on the Web that also use threads.

Review

This chapter provided some ideas of where you can go next to learn more about
Java. There are a few additional features of the language and many, many classes
provided by Java that you can use in your own applications. Also, be sure to
check out Appendix G, with its listing of books and Web resources that point the
way to even more information on Java.

What's Next?

Your next step is to become a Java master. You started this book as a white belt,
but you've come a long way. At this moment, you're somewhere in the middle of
your studies toward gaining a black belt. (You're already a force to be reckoned
with.)

As you continue to learn more about Java and improve your skills, remember
to have fun and develop some exciting applets and applications. We hereby grad-
uate you into the community of Java programmers! Good luck in all your future
Java endeavors.

WHAT'S NEXT?

357

Appendix A
Glossary

abstract class: An abstract class cannot be instantiated. See also concrete class.

allocate: To allocate a variable means to set aside enough memory to contain the
type of data that this variable will refer to.

ancestor: An ancestor is a class from which another class inherits.

applet: An applet is a Java application that is meant to run over the World-Wide
Web in a Web browser.

array: An array is a collection, or list, of data, all of the same type, that is allo-
cated in one contiguous block of memory.

assignment operator: The assignment operator, which is an equals sign (=), tells
the computer to compute the value to the right of the = and to assign that
value to the variable on the left of the =.

binary operator: A binary operator takes two variables. Examples of binary
operators are +, *, and / .

bitwise operator: A bitwise operator combines two values by working with their
individual bits.

block: A block of code combines any number of statements into a single super-
statement. A block is delimited by a pair of curly braces ({}).

Boolean expression: A Boolean expression evaluates to either true or false.

Boolean value: A Boolean value can be either true or false; there are no other
possibilities.

bytecodes: Bytecodes refer to the compiled class instructions, which are the
machine language instructions contained in the compiled class files (the files
thatend in . cl ass) . Bytecodes are ready to run on the Java Virtual Machine.

359

GLOSSARY

360

case-sensitive language: A case-sensitive language differentiates between upper-
case and lowercase letters.

casting: Casting data types means making one type of data become a different
type of data (for example, you might cast a floating-point number into an
integer).

catch an exception: To catch an exception means to handle an error condition.
See also throw an exception.

character-mode user interface: A character-mode user interface relies only on
text to interact with the user. See also graphical user interface.

class: A class is a template cookie cutter or for instantiating objects of the same
type. A class defines behavior and data for objects (as well as for the class
itself). Classes can inherit the behavior and variables of other classes, which
allows them to be arranged in hierarchies.

class variable or method: A class variable or method is a variable or method
belonging to a class. See also instance variable or method.

comparative operator: A comparative operator is an operator that compares two
expressions and evaluates to either true or false.

compile: To compile a program means to convert source code into machine
language.

compiled class file: A compiled class file contains the definition for a class that is
ready to run.

compiled language: A compiled language is a programming language whose
references to variables, memory, method invocations, and the flow through
the program are determined at compile time (as opposed to runtime).

compiler: A compiler converts an application’s source code into machine
language.

complex numbers: Complex numbers are defined by combining real numbers
(such as integers) with imaginary numbers.

component: A component is a user interface object that the user interacts with
directly (such as a button or a text field). See also container.

concrete class: A concrete class can be instantiated. See also abstract class.
constant: A constant is a variable whose value never changes.

constructor: A constructor is a special method that initializes an object.

container: A container is a user interface object that groups together components
and other containers. See also component.

counter: A counter is a variable used to keep track of the current iteration in a
loop.

current object: The object responding to a method invocation is known as the
current object. (Java automatically sets the variable namedt hi s to the current
object.)

data type: Variables in Java must be declared as representing a certain data type,
which includes numbers such as integers or floating-point values, characters,
Boolean values, or objects.

debugging: Debugging is the process of finding and fixing “bugs,” or problems,
in a program.

decrement: To decrement means to subtract 1 from the value of a number.

descendant: A class is said to be a descendant of another class when it inherits
from that class.

development cycle: The development cycle consists of the steps that program-
mers follow when developing a software application.

event: Java signals that an event has occurred every time the user interacts with
your applet’s user interface.

exception: An exception is Java’s way of reporting errors.
execute: To execute a program means to run it on a computer.
expression: An expression is any snippet of code that has a value.

floating-point numbers: Floating-point numbers are numbers containing frac-
tional values, such as numbers like 3.14159, 2.5, and .0001. (Floating-point
data types in Java can hold integer numbers as well.)

flow control: Flow control defines the order in which the statements in your pro-
gram are executed. Controlling your program’s flow means determining
when to branch around code, under which conditions to execute code, and
when to perform loops.

fractional numbers: See floating-point numbers.

framework: A framework consists of classes that you use to build your application.

GLOSSARY

361

GLOSSARY

362

garbage collection: Garbage collection is Java’s way of reclaiming memory that
your program has allocated at some point during its execution but which
your program no longer needs.

graphical user interface (GUI): A GUI is a user interface that takes advantage of
graphical elements, such as windows, buttons, checkboxes, and text fields.
GUIs take advantage of the mouse and are different from character-mode
user interfaces, which rely solely on text characters.

Hypertext Markup Language (HTML): HTML is a standard that defines format-
ting commands for laying out documents.

ifo: This is an abbreviation for input/output. Input refers to ways to get informa-
tion into the computer, such as through the keyboard or mouse. Output refers
to ways for the program to get information back to the user, such as display-
ing information using a monitor or printer.

increment: To increment means to add 1 to the value of a number.

infinite loop: An infinite loop is a loop that never terminates and instead repeats
a sequence of statements forever.

inheritance: Classes can be set up in relationships whereby subclasses build on
and extend their superclasses and inherit all of the variables and methods in
their superclasses.

initialization: Initialization refers to any code that affects a loop but occurs
before the loop is entered.

instance: See object.

instance variable or method: An instance variable or method belongs to an
object (as opposed to a class). See also class variable or method.

instantiate: To instantiate an object means to create an instance (an object) based
on a class.

integers: Integers are whole numbers like 37, 0, and 22. Variables declared in
Java as integers cannot hold floating-point or fractional values.

interface: An interface is like a class, except that it only defines a set of behavior
for classes to implement. Interfaces can also define class constants.

interpreted language: An interpreted language is a programming language
whose references to variables, memory, method invocations, and the flow
through the program are determined at runtime (as opposed to compile time).

invoke: To Invoke a method means to execute its instructions.

Java: This object-oriented programming language is especially appropriate to
use for developing applications for the Internet and the World-Wide Web.

Java-enabled Web browsers: These Web browsers are capable of running soft-
ware applications written in Java.

Java interpreter: A Java interpreter implements the Java Virtual Machine. There
is a different Java interpreter for each hardware/software environment,
which allows the same Java program you write to be run in these different
environments without modification.

Java Virtual Machine (JVM): The JVM is a theoretical machine, at the time of
this writing only implemented in software, that all Java programs are com-
piled to run on.

label: A label identifies a line of code.

layout manager: A layout manager is an object that controls how a container
arranges its user interface components.

literals: Literals are values not stored in a variable, such the number 123 or the
character a.

load a class: When Metrowerks Java first reads a compiled class file, it loads the
class into the interpreter.

local variable: A local variable is accessible only to the method in which it is
defined.

logical operator: A logical operator is an operator that evaluates to either true or
false.

loop: To loop means to repeat a sequence of statements (usually for a set number
of times). See also initialization, modification, and termination.

machine language: Machine language is the set of symbolic instruction codes
that tell a computer what to do. Machine language is written using only 1s
and Os. See also compiler.

method: A method is a chunk of code that defines behavior for an object or a
class.

method signature: A method signature is defined by a method’s name and
parameter types.

GLOSSARY

363

GLOSSARY

364

modification: When used in conjunction with a loop, modification refers to any
code that changes the value of the loop’s expression.

multithreading: Multithreading is the ability to run multiple threads at once
(that is, to do more than one thing at the same time). See also thread.

nested loop: A nested loop is a loop defined inside of another loop.

numeric expression: A numeric expression is an expression that evaluates to a
number.

object: An object is a specific instance of a class. Objects maintain data and pro-
vide access to behavior. All objects that belong to the same class store the
same types of data and have access to the same types of behavior. Each object
maintains data that makes it unique from other objects.

operator: An operator is a special character (or set of characters) representing a
specific computer operation.

override a method: To override a method involves changing the default behav-
ior for a method that a class inherits from one of its ancestors.

parameter: A parameter is a local variable that is initialized as part of invoking a
method.

porting: Porting is the process of getting source code created with a specific
environment in mind to run in a different environment.

postfix notation: Writing in postfix notation means placing the operator to the
right of a variable or an expression. (Only certain operators are appropriate to
use with postfix notation.)

prefix notation: Writing in prefix notation means placing the operator to the left
of a variable or an expression. (Only certain operators are appropriate to use
with prefix notation.)

program: A program consists of the code that implements application or applet.

project: In CodeWarrior, a project is a way to organize the different files that
make up an application or applet.

project file: In CodeWarrior, a project file contains information about the files
used to build a Java application or applet.

project window: In CodeWarrior, a project window displays information about
the files used to build a Java application or applet.

return control: To return control means to exit one method and resume program
execution in the invoking method.

scope: A variable’s scope defines where in the program you have access to the
variable.

shared variables: Shared variables are class variables. They are shared in the
sense that if one object changes the value of a class variable, a different object
will see the new value in that class variable as well.

signature: See method signature.

source code: Your source code is a set of instructions that determines what your
application or applet will do and when it will do it.

source file: A source file contains source code for an application or applet.

stand-alone applications: Java applications that do not run as part of the World-
Wide Web or in a Web browser are said to be stand-alone applications (as
opposed to applets).

standard input: Standard input is a place where new input from the user first
arrives to the program. This concept comes from a time when the user only
communicated with a computer using a keyboard (and not also with a
mouse). Hence, standard input almost always refers to the keyboard.

standard output: Standard output is the place where information displayed by the
program appears. This concept comes from a time when the computer almost
always displayed characters on the screen (without graphics). In a graphical
environment such as the Mac, Java environments often supply a place for stan-
dard output. In CodeWarrior, this place is the Java Output window.

statement: A statement is a line of Java code that actually does something. All
statements (simple and compound) in Java end in a semicolon (;).

static initializer: When your class loads, Java looks to see whether the class has
defined a static initializer. If it has, then this code is executed.

string: You use a string to store text in Java.

subclass: A subclass is the immediate descendant of a particular class, a class
that directly inherits from that class.

superclass: A superclass is the immediate ancestor of a particular class, a class
from which a class directly inherits.

syntax: A language’s syntax involves the rules for writing in that language.

GLOSSARY

365

GLOSSARY

366

syntax error: A syntax error occurs when your program does not follow the rules
of the language (such as by leaving off a semicolon accidentally or forgetting
to use curly braces where they should appear).

termination: When used in conjunction with a loop, termination refers to any
condition that causes the loop to end.

thread: A thread of control, or thread of execution, defines a specific sequence of
tasks that a program should perform. Many programs need only one thread
to do their thing, but some programs need to do more than one thing at the
same time; these programs need multiple threads. See also multithreading.

throw an exception: To throw an exception means to signal an error in Java. See
also catch an exception.

types: See data types.
unary operator: A unary operator takes only one variable.

user interface (UD): A user interface defines the “look and feel” of your application,
which includes the way in which the user interacts with your application.

variable: A variable is a container for your program’s data. Variables refer to
specific locations in memory where a program can store numbers, characters,
true/false values, or any other type of data.

whole numbers: See integers.

zip files: A zip file is a computer standard for combining files so that they take
up less room on the computer’s hard drive. Sun Microsystems picked this
standard as an easy way to organize and manage many different compiled
class files.

Appendix B

Source Code Listings

02.01 - hello, world

/5

This displays "Hello, world!" when it repaints.

Java's cl asses: Appl et (appl et)
Graphics (aw) used for draw ng

Custom cl asses: Hel | oWorl d

public class Hell owrld extends java.applet. Appl et {
public void paint(java.aw .G aphics g) {

g.drawsString("Hello, world!'", 100 , 25);
}

04.01 - simple draw

See 12. 03 - Si npl eDr aw

05.02 - static init

5 Y

This appl et displays a nessage when it | oads.

Java's cl asses: Appl et (appl et)
System (lang)

367

SOURCE CODE LISTINGS

368

Custom cl asses: Staticlnit

public class Staticlnit extends java.applet. Applet {

static {
Systemout.printin("l like Java in the springtine");

06.01 - operator

/2
This appl et performs sonme arithnetic operations when it | oads.

Java's cl asses: Appl et (appl et)
System (1ang)

Custom cl asses: Operator

public class Operator extends java.applet. Applet {
static {
int nmylnt;

nylnt = 3 * 2,

Systemout.println("nylnt --->" + nylnt);
mylnt += 1,
Systemout.printin("nylnt --->" + nylnt);
mylnt -=5;
Systemout.println("nylnt --->" + nylnt);
mylnt *= 10;
Systemout.printin("nylnt --->" + nylnt);

SOURCE CODE LISTINGS

nmylnt /= 4;
Systemout.printin("mylnt --->" + nylnt);
nmylnt /= 2;
Systemout.printin("nylnt --->" + nylnt);
}
}
06.02 - postfix
/2
This applet illustrates prefix and postfix notation.
Java's cl asses: Appl et (appl et)

System (lang)

Custom cl asses: Postfix

public class Postfix extends java.applet. Applet {

static {
i nt nyl nt;
nylnt = 5;
Systemout.printin("nylnt --->" + nylnt++);
Systemout.printiln("nylnt --->" + ++nmylnt);
}

07.01 - life cycle

/5

This appl et displays a nessage at each phase in its life cycle.

369

SOURCE CODE LISTINGS

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: LifeCycle

public class LifeCycle extends java.applet. Applet {

public void init() {
Systemout.printIn("init()");
}

public void start() {
Systemout.println("start()");

}

public void stop() {
Systemout. printin("stop()");

}

public void destroy() {
System out. println("destroy()");

}

07.02 - init

| % o o o e e e e e e e e e e e e e eeeea oo
Thi s appl et invokes methods when it initializes.

Java's cl asses: Appl et (appl et)
System (1ang)

Custom cl asses: | nitMethod

public class |nitMthod extends java.appl et. Applet {

370

SOURCE CODE LISTINGS

public void init() {
Systemout.printin("init()");
set UpQUI () ;

}

voi d set UpQUI () {
System out. println("set UpGU ()");
makeW ndowl () ;
makeW ndow2() ;

}

voi d makeW ndowl() {
System out. printl n(" nmakeW ndowl()");

}

voi d makeW ndow2() {
System out. printl n("makeW ndow2()");

}

07.03 - average

/2
This applet finds the average for three sets of nunbers.

Java's cl asses: Appl et (appl et)
System (lang)

Cust om cl asses: Average

public class Average extends java.appl et. Applet {
public void start() {
i nt average;

average = findAverage(10, 20, 30);
System out. printl n(average);

371

SOURCE CODE LISTINGS

average = findAverage(-400, 182, 213);
System out. printl n(average);

average = findAverage(9901, 20201, 41);
System out. printl n(average);

int findAverage(int numl, int nun2, int nunB) ({
return (numl + nun + nunB)/3;

08.01 - truth tester

g
This applet illustrates if-else statenents.
Java's cl asses: Appl et (appl et)

System (1ang)

Custom cl asses: TruthTester

public class TruthTester extends java. applet. Applet {
public void init() {

bool ean hasCar, hasTi neToG veRi de;
bool ean not hi ngEl seOn, newEpi sode, itsARerun;

hasCar = true;
hasTi mreToG veRi de = true;

if (hasCar && hasTi mreToG veRi de)
Systemout.printin("Hop in - I'lIl give you a ride!");
el se
System out. println(
"I've either got no car, no time, or both!");

372

SOURCE CODE LISTINGS

not hi ngEl seOn = true;
newEpi sode = true;

i f (newkpi sode || nothi ngEl seOn)
Systemout.printin("Let's watch Star Trek!");
el se
System out. printl n(
"Sonething else is on or |'ve seen this one.");

not hi ngEl seOn = true;
itsARerun = true;

if (nothingElseOn || (!'itsARerun))
Systemout.println("Let's watch Star Trek!");
el se
System out. printl n(
"Something else is on or |'ve seen this one.");

08.02 - loop tester

/2
This applet performs a few | oops.

Java's cl asses: Appl et (appl et)
System (lang)

Cust om cl asses: LoopTester

public class LoopTester extends java.applet. Applet {
public void init() {

int i;

i = 0;

while (i++ < 4)
Systemout.printin("while: i=" +1i);

373

SOURCE CODE LISTINGS

Systemout.printin("After while loop, i=" +i);
Systemout.println(" ");

for (i =0; i <4; i++)
Systemout.printin("first for: i=" +1i);
Systemout.printin("After first for loop, i=" +i);

Systemout.println(" ");

for (i =1; i <=4; i++)
Systemout.println("second for: i=" +i);
Systemout.println("After second for loop, i=" + i);

08.03 - is odd

/22
This applet illustrates sinple flow control.
Java's cl asses: Appl et (appl et)

System (1ang)

Custom cl asses: |sCQdd

public class |IsOdd extends java. appl et. Appl et {
public void init() {
i nt i;
for (i =1; i <=20; i++) {

Systemout.print("The number " + i + " is ");

if ((i %2) ==0)
Systemout.print("even");
el se
Systemout.print("odd");

374

SOURCE CODE LISTINGS

if ((i %3) ==0)
Systemout.print(" and is a multiple of 3");

Systemout.println("");

08.04 - next prime

| % o o o i o o e o e e e o e e e e e e e e emee e -
This applet finds the next prine nunber after a starting point.

Java's cl asses: Appl et (appl et)
System (lang)
Mat h (1ang)

Custom cl asses: NextPrine

public class NextPrine extends java. appl et. Applet {
public void init() {

i nt startingPoint, candidate, last, i;
bool ean i sPri ne;

startingPoint = 19;

if (startingPoint <2) {
candi date = 2;

} else if (startingPoint == 2) {
candi date = 3;
} else {

candi date = startingPoint;
if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- - ;

375

SOURCE CODE LISTINGS

376

do {

isPrinme = true; /* Assune gl orious success */
candi date += 2; /* Bunp to the next nunber */
last = (int)Math.sqrt(candidate);

/* We'll check to see if candidate */

/* has any factors, from2 to |ast */

/* Loop through odd numbers only */
for (i =3; (i <=last) & isPrine; i +=2) {
if ((candidate %i) == 0)
isPrime = fal se;
}
} while (! isPrime);
}

System out. println(
"The next prinme after " +
startingPoint + " is " + candidate);

08.05 - next prime 2

/22
This applet finds the prinme nunbers from1l to 100.

Java's cl asses: Appl et (appl et)
System (1ang)
Mat h (1ang)

Custom cl asses: NextPri ne2

public class NextPrine2 extends java. applet. Applet {
public void init() {

i nt candi date, i, |ast;

SOURCE CODE LISTINGS

bool ean i sPri ne;
Systemout.printin("Primes from1 to 100: 2, ");
for (candidate = 3; candidate <= 100; candidate += 2){

i sPrime = true;
last = (int)Math.sqgrt(candidate);

for (i =3; (i <=last) & isPrime; i += 2) {

if ((candidate %i) == 0)
isPrime = fal se;

}

if (isPrime)
System out. println(candidate);

08.06 - next prime 3

/2
This applet finds the prines between 1 and 100.

Java's cl asses: Appl et (appl et)
System (l1ang)

Custom cl asses: |sCdd

public class NextPrine3 extends java.applet. Applet {
public void init() {

i nt pri nel ndex, candi date, i, |ast;
bool ean i sPri ne;

377

SOURCE CODE LISTINGS

Systemout.printin("Prime #1 is 2.");

candi date = 3;
primel ndex = 2;

while (prinelndex <= 100) {

isPrime = true;
last = (int)Math.sqgrt(candidate);

for (i =3; (i <= last) & isPrime; i += 2) {
if ((candidate %i) == 0)
isPrinme = fal se;

}

if (isPrime) {
Systemout.println("Prine
"is + candi date);
pri mel ndex++;

+ prinelndex +

}

candi date += 2;

09.01 - employee 1

g
This applet illustrates using instance variables and instance
nmet hods.

Java's cl asses: Appl et (appl et)

System (1ang)

Custom cl asses: Enpl oyeel

public class Enpl oyeel extends java. appl et. Applet {

i nt hourl yWage;
378

int hour sWor ked

i nt earnedl ncone() {
return hourl yWage * hour s\Wor ked;

}

public void init() {
hour | yWage = 10;
hour sWorked = 20
}

public void start() {
i nt ear nedl ncone;

Systemout.println("hourly wage = " + hourl y\Wage) ;
System out. println("hours worked =" + hoursWrked);

ear nedl ncone = ear nedl ncone();

SOURCE CODE LISTINGS

System out. println("earned income = " + earnedl ncone);

09.02 - employee 2

2

This applet illustrates working with instance vari abl es
and i nstance nethods in different objects.

Java's cl asses: Appl et (appl et)
System (l1ang)

Cust om cl asses: Enpl oyee2
Enpl oyee

public class Enpl oyee2 extends java. appl et. Appl et {

Enpl oyee el
Enpl oyee e2
Enpl oyee e3

379

SOURCE CODE LISTINGS

public void init() {
el = new Enpl oyee();
el. hour| ywage = 10;
el. hour sWwrked = 20;

e2 = new Enpl oyee();
e2. hour| yWage = 18;
e2. hour swrked = 38;

e3 = new Enpl oyee();

e3. hour| yWage = 12;

e3. hour sWwrked = 52;
}

public void start() {
Systemout.println("");
System out. printl n("Enpl oyee 1:");
el. di splaylnfo();

Systemout.println("");
System out. printl n("Enpl oyee 2:");
e2.displaylnfo();

Systemout. println("");
System out. printl n("Enpl oyee 3:");
e3. di splayl nfo();

}

cl ass Enpl oyee {
i nt hourl yWage;
i nt hour sWr ked,;

i nt earnedl ncone() {
return hourl yWage * hour sWr ked;

}

voi d displaylnfo() {
i nt earnedl ncome;

380

SOURCE CODE LISTINGS

Systemout. println("hourly wage = " + hourl yWage);
Systemout. println("hours worked = " + hoursWrked);

ear nedl ncone = ear nedl ncone();
Systemout.println("earned i ncone = " + earnedl ncone);

09.03 - employee 3

/2
Thi s appl et shows when you might want to use the variable "this".

Java's cl asses: Appl et (appl et)
System (lang)

Custom cl asses: Enpl oyee3
Enpl oyee

public class Enpl oyee3 extends java. appl et. Appl et {

Empl oyee el;
Enpl oyee e2;
Enpl oyee e3;

public void init() {
el = new Enpl oyee();
el.initialize(10, 20);

e2 = new Enpl oyee();
e2.initialize(18, 38);

e3 = new Enpl oyee();
ed.initialize(12, 52);
}

public void start() {
Systemout.println("");
System out. printl n("Enpl oyee 1:");
el. displaylnfo();

381

SOURCE CODE LISTINGS

382

Systemout.println("");
System out. println("Enpl oyee 2:");
e2. di splaylnfo();

Systemout. println("");
System out. println(”Enpl oyee 3:");
e3. di splaylnfo();

}

cl ass Enpl oyee {
i nt hourl yWage;
i nt hour sWr ked;

i nt earnedl ncone() {
return hourl yWage * hour sWrked

}

voi d displaylnfo() {
i nt earnedl ncone;
Systemout.println("hourly wage = " + hourl yWage) ;
System out. println("hours worked = " + hoursWrked);

ear nedl ncone = ear nedl ncone();
Systemout. println("earned i nconme = " + earnedl ncone);

}

void initialize(int hourlyWage, int hoursWrked) {
t hi s. hourl yWage = hourl yWage;
t hi s. hour sWor ked = hour sWor ked

09.04 - variable

/22
Thi s appl et shows a sinple exanple of accessing a class variable

SOURCE CODE LISTINGS

Java's cl asses: Appl et (appl et)
System (1 ang)

Custom cl asses: O assVar

public class O assVar extends java. appl et. Applet {
static int test = 20;

public void init() {
Systemout.println("test " + test);

int test = 30;

Systemout.println("test " + test);

Systemout.println("Cd assVar.test = + ClassVar.test);

09.05 - method

/2
This appl et shows an exanpl e of accessing a class variable and
a class nethod.

Java's cl asses: Appl et (appl et)
System (l1ang)

Cust om cl asses: O assMet hod
Crcle
public class O assMet hod extends java. appl et. Appl et {

public void init() {
Circle c1, c2, c3;

383

SOURCE CODE LISTINGS

384

cl = new Crcle();
Circle.nunCircl es++;

c2 =new Circle();
Crcle.nunCircl es++;

c3 = new Crcle();
Circle.nunCircl es++;

Crcle.displayNunCircles();

class Crcle {
static int nunCircles;

static void displayNunCircles() {
Systemout.printin(nunCircles +
circles were created.");

}

10.01 - triangle

| % e e e e e eeeeieeoos
Thi s appl et shows how overriding a method can change its behavior.
It also shows how to invoke the behavior that's defined in the
supercl ass for an object.

Java's cl asses: Appl et (appl et)
System (1ang)

Custom cl asses: Tri angl eAppl et
Tri angl e

public class Triangl eAppl et extends java. appl et. Appl et {

SOURCE CODE LISTINGS

public void init() {

Triangle t1 = new Triangle();
t1l. base = 10;
t 1. hei ght = 20;

Triangle t2 = new Triangl e();
t2. base = 10;
t2. hei ght = 20;

Triangle t3 = new Triangle();
t 3. base = 12;
t 3. hei ght = 52;

Systemout.println("The triangles say:");
Systemout.println("tl ==1t2? " + tl.equals(t2));
Systemout.printIn("tl ==1t3? " + tl.equals(t3));

System out. println("The objects say:");
Systemout.println("tl ==1t2? " + t1.objectEquals(t2));
Systemout.println("tl == t3? " + t1.objectEquals(t3));

class Triangle {
i nt base;
int height;

publ i c bool ean equal s(Cbj ect obj) {
Triangle t;

if (obj instanceof Triangle) {
t = (Triangl e)obj;

if (t.base == base && t.hei ght == height)
return true;

385

SOURCE CODE LISTINGS

386

return fal se;

bool ean obj ect Equal s(Obj ect obj) {
return super.equal s(obj);

10.02 - access

2
This applet uses a small class hierarchy to illustrate how to
defi ne abstract classes, superclasses, subclasses, and private
and protected vari abl es.

Java's cl asses: Appl et (appl et)
System (1ang)
Col or (awt)

Custom cl asses: AccessAppl et
Shape
Crcle
Squar e
i mport java.aw . Col or;
public class AccessAppl et extends java.applet. Applet {

public void init() {

Circle c = new Crcle();
Square s new Square();

c. set Col or (Col or. bl ue);
s. set Col or (Col or. bl ack) ;

c.xXx = 50;
c.y = 60;

SOURCE CODE LISTINGS

x
1

100;
s.y = 200;

(@]

.draw();
.draw();

n

/ ** Shapes provi de comon characteristics for the circle and
square. */

abstract cl ass Shape {
static protected final int radius = 20;

private Col or color;
i nt X;
int y;

abstract void draw();

voi d set Col or (Col or color) {
if (color == Col or. bl ack)
this.color = Color.white;
el se
this.color = color;

Col or getColor() {
return color;

/** Draws and maintains circle information. */
class Circle extends Shape {
void drawm) {
Systemout.println("Crcle: radius =" + radius);

387

SOURCE CODE LISTINGS

Systemout.printin("Grcle: color =" +
getColor().toString());

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{

void draw) {
System out. println("Square: radius =" + radius);
System out. println("Square: color =" +

get Col or ().toString());

11.01 - components

g
This applet creates a few different user interface conmponents
and detects when the user interacted with them

Java's cl asses: Appl et (appl et)
System (1ang)
But t on (awt)
Choi ce (awt)
TextField (awt)
Checkbox (awt)
CheckboxGr oup (awt)
Label (awm)
Event (awt)

Custom cl asses: Ul Appl et

i mport java.aw.*;

public class U Applet extends java.applet. Applet {

But t on but t on;
Choi ce choi ce;
TextField text Fi el d;

388

SOURCE CODE LISTINGS

/** Create a user interface. */
public void init() {

}

Checkbox checkbox;
CheckboxG oup checkboxG oup;
Label | abel ;

/] create a choice |ist
choi ce = new Choi ce();
choi ce. addl t en(" Appl e") ;
choi ce. addl t em(" Banana") ;
choi ce. addl tem(" Cherry");
add(choi ce);

/'l create a text field
textField = new TextField(10); // 10 colums wi de
add(textField);

/'l create a button
button = new Button("Cdick nme");
add(button);

/1 create a | abel
| abel = new Label ("I ama | abel");
add(| abel);

/'l create 3 exclusive-choice checkboxes
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("Yes", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("No", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("Maybe", checkboxG oup, true);
add(checkbox) ;

/** Respond to user input events. */
public bool ean acti on(Event e, Object arg) {

389

SOURCE CODE LISTINGS

11.02 - paint hello

[* ---

if (e.target == textField)
System out . printl n(
"User entered text into the text field");

else if (e.target == button)
Systemout.println("User clicked the button");

else if (e.target == choice)
Systemout.println("User selected a new choice");

else if (e.target instanceof Checkbox)
Systemout.println("User clicked a checkbox");

el se
Systemout. println("Unrecogni zed event");

return super.action(e, arg);

This appl et displays a friendly greeting.

Java's cl asses: Appl et (appl et)

Graphics (aw)

Custom cl asses: PaintHello

i mport java.aw .G aphics;

public class PaintHell o extends java. appl et. Applet {

public void paint(Gaphics g) {

}

390

g.drawString("Hello, applet!"”, 80, 50);

11.03 - paint circle

SOURCE CODE LISTINGS

/5

This applet paints a red circle.

Java's cl asses: Appl et (appl et)
Graphics (aw) used for draw ng
Col or (awt) defines colors

Cust om cl asses: Si npl eDr aw

___ */
i nport java. appl et. Appl et ;
i mport java.aw.*;
public class SinpleDraw extends Applet {
/** Draw a red circle when the applet paints itself. */
public void paint(Gaphics g) {
g. set Col or (Col or.red);
g.fillOval (115, 55, 40, 40);
}
}
11.04 - circle at click
| % o o e o e e e e e e ediemeeo oo
This applet paints a red circle wherever you click.
Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors
Cust om cl asses: Si npl eDr aw
Crcle defines and draws circles
... */

391

SOURCE CODE LISTINGS

i mport java. appl et. Appl et;
i mport java.awt . *;

public class SinpleDraw extends Applet {
Crcle C;

/** Create a circle to start with. */
public void init() {
c = new Crcle();
c.initialize(50, 50);
}

/** Create a new red circle when the user clicks the nouse. */
publ i c bool ean nouseUp(Event e, int x, int y) {

c = new Crcle();

c.initialize(x, y);

repaint();

return true;

}

/** Repaint the newest circle. */
public void paint(Gaphics g) {
c.draw(g);
}
}

/** Maintain circle informati on and provide drawi ng capabilities. */

class Crcle {
Col or col or;
int Xx;
int vy;

/** Draw a circle that is 20 pixels in radius. */
voi d drawm Graphics g) {

g.setCol or(this.color);

g.fillOval (this.x - 20, this.y - 20, 40, 40);

392

SOURCE CODE LISTINGS

/** Initialize a red circle at the given pixel |ocation. */
void initialize(int x, int y) {

col or = Col or.red;

this.x = x;

this.y =vy;

11.05 - simple draw

This applet paints a circle or square of the col or you' ve chosen
wherever you click.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors
Choi ce (awt) shape and col or sel ection
choi ces

Cust om cl asses: Si npl eDr aw
Crcle defines and draws circles
Squar e defines and draws squares

i nport java. appl et. Appl et ;
i mport java.aw.*;

public class SinpleDraw extends Applet {
Shape current Shape = nul | ;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/** Create the GUI. */
public void init() {

393

SOURCE CODE LISTINGS

shapeChoi ce = new Choi ce();
shapeChoi ce. addltem("Circle");
shapeChoi ce. addl t em(" Square") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl tem("Red") ;
col or Choi ce. addl ten{" G een") ;
col or Choi ce. addl ten("Bl ue");
add(col or Choi ce) ;

}

/** Draw the current shape. */
public void paint(Gaphics g) {
if (currentShape !'= null)

current Shape. draw(g) ;
}

/** Create a new shape. */

publ i c bool ean nouseUp(Event e, int x, int y) {
Col or color;
String shapeString shapeChoi ce. get Sel ectedl tem();
String colorString = col or Choi ce. get Sel ectedltem();

if (colorString.equal s("Red"))
color = Col or.red;

else if (colorString.equal s("Geen"))
color = Col or. green;

el se
col or = Col or. bl ue;

I/l Create a new shape of the appropriate type.
/1 Wthout inheritance, we have to wite duplicate
/'l code for each of the shape types.

if (shapeString.equals("Crcle"))
current Shape = new G rcle();
el se
current Shape = new Square();

cur rent Shape. col or = col or;

394

SOURCE CODE LISTINGS

cur r ent Shape. x
current Shape.y

nou

repaint();

return true;

}

/ ** Shapes provi de comon characteristics for the circle and
square. */

abstract cl ass Shape {
static public final int shapeRadius = 20;

Col or color;
int X;
int y;

abstract void draw G aphics Qg);
}

/** Draws and maintains circle information. */
class Circle extends Shape {
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mai ntai ns square information. */
cl ass Square extends Shape{
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

395

SOURCE CODE LISTINGS

11.06 - payroll

This illustrates the begi nning of an applet to keep track
of enpl oyees in a database. This version defines an

Enpl oyee class but only adds the text fields to the applet
for use once nore of the applet is devel oped.

Java's cl asses: Appl et (appl et)
TextField (awt) for entering new enpl oyee data
Label (awt) read-only text

GridLayout (awt) aligns by columms and rows

Custom cl asses: Payrol |
Enpl oyee payroll information

i nport java. appl et. Appl et;
i mport java.aw.*;

public class Payroll extends Applet {
TextFi el d textFiel dEnpl oyee;
TextField textFieldWage;
TextField textFieldHours;
Label | abel Ear ned;

/* Create user interface needed by this applet. */
public void init() {

/1 Arrange the user interface in a grid.
set Layout (new Gi dLayout(4,2)); // 4 rows, 2 colums

/1 1st row

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFi el d(20); // 20 colums w de
add(t ext Fi el dEnpl oyee) ;

396

SOURCE CODE LISTINGS

/1 2nd row

add(new Label ("Hourly wage:"));

text Fi el dwage = new TextFiel d(20); // 20 colums w de
add(t ext Fi el dWage);

/1 3rd row
add(new Label ("Hours worked:"));
text Fi el dHours = new Text Fiel d(20); // 20 colums wi de
add(textFi el dHours);
/1 4th row
add(new Label ("Earned incone:"));
| abel Earned = new Label ();
add(| abel Ear ned) ;
}

/** Detect keyboard entry. */
public bool ean acti on(Event e, (Object arg) {

if (e.target == textFiel denpl oyee) {
System out. printl n("Enpl oyee nunber");

} else if (e.target == textFieldWge) {
System out.println("Hourly wage");

} else if (e.target == textFieldHours) {
System out. println("Hours worked");

}

return super.action(e, arg);

}

[** Maintain payroll information for an enpl oyee. */
cl ass Enpl oyee {

397

SOURCE CODE LISTINGS
i nt i dNunber;

i nt hourl yWage;
i nt hour sWr ked;

i nt earnedl ncone() {
return hourl yWage * hour sWr ked;

12.01 - floating pt

| % o o o e e e e e e e e e e e e e eeeea oo
Thi s appl et uses floating-point nunbers as instance vari abl es.

Java's cl asses: Appl et (appl et)
System (1ang)

Custom cl asses: Fl oati ngPt
Tri angl e

public class FloatingPt extends java.applet. Applet {
public void init() {

Triangle t1 = new Triangle();

t 1. base =9

t1. height = 15

Triangle t2 = new Triangle();

t 2. base = 14. 232

t2. hei ght = 3.2947

Systemout.println("area of t1lis " + tl.area());
Systemout.printin("area of t2 is " + t2.area());

398

SOURCE CODE LISTINGS

class Triangle {

12.02 - arrays

/*

doubl e base;
doubl e hei ght;

doubl e area() {
return base * height / 2.0;

}

Thi s appl et displays your fortune whenever you resize the applet.

Java's cl asses: Appl et (appl et)
Graphics (aw) used for draw ng
Mat h (1ang) to find the absol uate val ue
Dat e (util) gets the current date
Random (util) finds a random nunber

Cust om cl asses: ArrayAppl et

i nport java.aw .G aphics;
i mport java.util.Date;
i mport java.util.Random

public class ArrayAppl et extends java. appl et. Appl et {

i nt nunStrings = 5;
String[] paintStrings;
Random r;

public void init() {
Date d = new Date(); /1 today's date
r = new Random(d.getTime()); // mlliseconds since 1970

paintStrings = new String[nunStrings];

paintStrings[0] = new String("Look for opportunities");
paintStrings[1] = new String("Take chances");
paintStrings[2] = new String("Beware of tricks");

399

SOURCE CODE LISTINGS

400

pai nt Strings|[3]
pai nt Stri ngs|[4]

new String("Take the day off");
new String("Smell the roses");

}
public void paint(Gaphics g) {
int index = r.nextlnt() % nunStrings;

i ndex = Mat h. abs(i ndex);
g.drawsString(pai ntStrings[index], 50, 25);

12.03 - SimpleDraw

[* o e o e e e e e e o e e e e e e o e e e e e e e e e e e e m e e o e e o e e ema— o

This applet paints a circle or square of the color you've chosen

wherever you click. This applet keeps a list of the shapes you' ve
dr awn

and paints all the shapes in the list when it repaints.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors
Choi ce (awt) shape and col or sel ection
choi ces
Vect or (util) list of shapes

Custom cl asses: Si npl eDr aw
Circle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares

i mport java. appl et. Appl et;
i mport java.util.*;
i mport java.aw.*;

SOURCE CODE LISTINGS

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/[** Create the GUI. */
public void init() {
dr awnShapes = new Vector ();

shapeChoi ce = new Choi ce();
shapeChoi ce. addl tem("Circle");
shapeChoi ce. addl t em(" Square") ;
add(shapeChoi ce);

col or Choi ce = new Choi ce();
col or Choi ce. addl tem(" Red") ;
col or Choi ce. addl tem(" G een");
col or Choi ce. addl ten(" Bl ue");
add(col or Choi ce);

}

/** Create a new shape. */
public bool ean mouseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString
String colorString

shapeChoi ce. get Sel ectedl ten();
col or Choi ce. get Sel ectedlten();

if (shapeString.equals("Circle"))
s = new Circle();

el se
s = new Square();

if (colorString.equal s("Red"))
s.color = Col or.red,;

else if (colorString.equal s("Geen"))
s.color = Col or. green;

el se
s.color = Col or. bl ue;

401

SOURCE CODE LISTINGS

) X;
S.y =Y,

dr awnShapes. addEl ement (s) ;
repaint();

return true;

}

/** Draw all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunBhapes;

nuntShapes = drawnShapes. si ze();
for (int i =0; i < nunShapes; i++) {

s = (Shape) drawnShapes. el ement At (i) ;

/1 When the shape draws, circles and squares each
/'l invoke their own draw net hod, depending on
/'l which shape this is.

s.drawm(g);

}

/** Shapes provide common characteristics for the circle and
square. */
abstract cl ass Shape {

static public final int shapeRadius = 20;

Col or col or;
int x;

int vy;

abstract void draw G aphics g);

402

SOURCE CODE LISTINGS

/** Draws and nmaintains circle information. */
class Circle extends Shape {
void drawm G aphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

12.04 - Payroll

This illustrates a few standard cl asses and basi c appl et
behavior. Enter an enpl oyee nunber for an enployee into a text
field. If this enployee exists, the applet will find the enpl oyee

and display the enpl oyee's payroll information. O herw se, the

applet will create a new enpl oyee and add the enpl oyee to the

dat abase.

Java's cl asses: Appl et (appl et)

TextField (awt) to enter new enpl oyee data
Label (awt) read-only text
GridLayout (aw) al i gns by columms and rows
Event (awt) user -generated action
Hashtable (util) dat abase
String (lang) t ext
I nt eger (lang) nunber

Custom cl asses: Payrol |
Enpl oyee payrol |l information

403

SOURCE CODE LISTINGS

i mport java. appl et. Appl et;
i mport java.awt . *;
i mport java.util.*;

public class Payroll extends Applet {
Hasht abl e db;
TextFi el d textFiel dEnpl oyee;
TextField textFiel dwage;
TextField textFieldHours;
Label | abel Ear ned;
Enpl oyee current;

/* Create user interface needed by this applet. */
public void init() {

/'l Create the enpl oyee database.
db = new Hashtabl e();

/1l Arrange the user interface in a grid.
set Layout (new Gri dLayout(4,2)); // 4 rows, 2 colums

/1 1st row.

add(new Label (" Enpl oyee nunber:"));

t ext Fi el dEnpl oyee = new TextFi el d(20); // 20 colums w de
add(t ext Fi el dEnpl oyee) ;

/1 2nd row.

add(new Label ("Hourly wage:"));

text Fi el dwage = new TextFiel d(20); // 20 colums wi de
add(t ext Fi el dWage);

/1 3rd row.

add(new Label ("Hours worked:"));

text Fi el dHours = new TextFiel d(20); // 20 columms w de
add(text Fi el dHours);

/1 4th row.

add(new Label ("Earned i ncone:"));
| abel Earned = new Label ();

add(| abel Ear ned) ;

404

SOURCE CODE LISTINGS

setCurrent(null);

/** Handl e events that propagate to the applet. This wll
i ncl ude new text field data. */

public bool ean acti on(Event e, (bject arg) {

Empl oyee enpl oyee
i nt numnber ;

/'l Createl/retrieve the enpl oyee.
if (e.target == textFiel denpl oyee) {

nunber = intFronirext Fi el d(t ext Fi el dEnpl oyee) ;
enpl oyee = fi ndEnpl oyee(nunber);

/'l Create a new enployee if not already there
if (enployee == null)
enpl oyee = addNew(nunber);

/! Display this enployee's payroll information.
set Current (enpl oyee);

/'l Set the hourly wage for the current enployee.
} else if (e.target == textFiel dwage) {

if (current !'=null) {
current. hourl yWage = int FroniText Fi el d(t ext Fi el dWage) ;
recal cearned();

}
/1 Set the number of hours worked for the current enployee.
} else if (e.target == textFieldHours) {

if (current !'=null) {

current. hoursWwrked =
i nt Fronirext Fi el d(t ext Fi el dHour s);
recal cearned();

405

SOURCE CODE LISTINGS

return super.action(e, arg);

}

/** This is a utility routine to retrieve an integer froma text
field. */

int intFronTextField(TextField tf) {
String s;

i nt val ue;

s = tf.getText();

try {

val ue = I nteger.parselnt(s);
} catch (Exception e) {

val ue = 0;

setCurrent(null);

}

return val ue;

}

/** Do a database | ookup using the enpl oyee's nunber as the
key. */

Enpl oyee findEnpl oyee(int nunber) {
return (Enpl oyee) db. get (new | nt eger (nunber));
}

/** Set the text fields to display the correct information for
the current enpl oyee. */

voi d set Current (Enpl oyee e) {
current = eg;

/1 If there isn't a current enployee, initialize the fields.
if (e ==null) {

t ext Fi el dEnpl oyee. set Text ("0");

t ext Fi el dWage. set Text ("0");

text Fi el dHour s. set Text ("0");

406

SOURCE CODE LISTINGS

} else {
t ext Fi el dWage. set Text (
Integer.toString(current. hourl yWage));

t ext Fi el dHour s. set Text (
Integer.toString(current. hoursWrked));

}

recal ckarned();

}

/** Create a new enployee and add it to the database */
Enpl oyee addNew(i nt nunber) {

Empl oyee e = new Enpl oyee();

e. i dNunmber = nunber;

e. hourl yWage = 0;

e. hour sWrked = 0;

db. put (new I nteger (nunber), e); // Add to the database
setCurrent(e);

return e;

}

/** Recalculate the text to display in the "Earned incone:"
| abel . */

voi d recal cearned() {

i nt earned;
if (current !'= null)

earned = current.earnedl ncome();
el se

earned = O;

| abel Ear ned. set Text (I nteger.toString(earned));

407

SOURCE CODE LISTINGS

/** Maintain payroll information for an enpl oyee. */
cl ass Enpl oyee {

i nt i dNunber;

i nt hourl yWage;

i nt hour sWr ked;

i nt earnedl ncone() {
return hourl ywage * hour sWrked,;

13.01 - applet params

| ea o
This applet paints a circle or square of the color you' ve chosen
wherever you click. This applet keeps a list of the shapes you' ve
drawn and paints all the shapes in the list when it repaints. It
allows the HTML file to supply a list of colors for the shapes.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors
Choi ce (awt) shape and col or choices
Vect or (util) list of shapes

Custom cl asses: Si npl eDr aw
Circle defines and draws circles
Square defines and draws squares
Shape a conmon ancestor for circles and squares

i nport java. appl et. Appl et ;
i mport java.util.*;
i mport java.aw.*;

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

408

SOURCE CODE LISTINGS

/** Create the GUI. */
public void init() {
dr awnShapes = new Vector ();

shapeChoi ce = new Choi ce();
shapeChoi ce. addl tem("Circle");
shapeChoi ce. addl t en(" Square") ;

add(shapeChoi ce);

col or Choi ce = new Choi ce();

col or Choi ce. addl t en(get Paranet er ("col or1"));
col or Choi ce. addl t en(get Paranet er ("col or2"));
col or Choi ce. addl t em(get Paranet er ("col or3")); t

add(col or Choi ce);

}

/** Draw all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunShapes;

nuntShapes = drawnShapes. si ze();
for (int i = 0; i < nunBhapes; i++) {

s = (Shape) drawnShapes. el enent At (i) ;
/1 When the shape draws, circles and squares each

/'l invoke their own draw net hod, dependi ng on
/'l which shape this is.

s.draw(g) ;

}

/** Create a new shape. */
public bool ean nmobuseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString shapeChoi ce. get Sel ectedlten();
String colorString = col or Choi ce. get Sel ectedlten();

409

SOURCE CODE LISTINGS

if (shapeString.equals("Circle"))
s = new Circle();

el se
s = new Square();

if (colorString.equal s("Red"))
s.color = Color.red

else if (colorString.equal s("Geen"))
s.color = Col or. green;

else if (colorString.equal s("Black"))
s.col or = Col or. bl ack;

else if (colorString.equal s("Blue"))
s.col or = Col or. bl ue;

else if (colorString.equal s("Pink"))
s.col or = Col or. pi nk;

else if (colorString.equal s("Cyan"))
s.col or = Col or. cyan;

else if (colorString.equal s("Oange"))
s.col or = Col or. orange;

el se
s.color = Color.white; // default color

X = X
S.Yy =Y,

dr awnShapes. addEl enent (s) ;
repaint();

return true;

}

/** Shapes provide common characteristics for the circle and
square. */
abstract class Shape {

static public final int shapeRadius = 20;

Col or color;

410

SOURCE CODE LISTINGS

int x;
int vy;

abstract void draw G aphics Qg);
}

/** Draws and nmaintains circle information. */
class Circle extends Shape {
void drawm G aphics g) {
g.setCol or(this.color);
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);

13.02 - constructor

| ¥ e o e e e e e e e e e e e e e e aeeaaoas
This applet creates circles using different constructors.

Java's cl asses: Appl et (appl et)
System (lang)

Custom cl asses: Constructor
Circle

i mport java. appl et. Appl et;

public class Constructor extends Applet {

411

SOURCE CODE LISTINGS

public void init() {
Circle cl1, c2, c3;

cl =new Crcle();
c2 = new Circl e(20);
c3 = new Circle(c2);

cl.displaylnfo();
c2.displaylnfo();
c3.displaylnfo();

}

class Crcle {
static int defaultRadius = 10;
int radius;

Crcle() {
radi us = def aul t Radi us;

}

Circle(int radius) {
this.radius = radi us;

}

Circle(Crcle referenceCircle) {
this.radius = referenceC rcle. radi us;

}

voi d di splaylnfo() {
Systemout.printIn("This circle's radius is " + radius);

}

13.03 - exception

/22
This applet creates circles using different constructors. One
of these constructors throws an exception.

412

SOURCE CODE LISTINGS

Java's cl asses: Appl et (appl et)
System (1 ang)
Exception (Ilang)

Custom cl asses: Constructor
Circle
I magi naryCi rcl eExcepti on

i nport java. appl et. Appl et ;

public class Excepti onAppl et extends Applet {
public void init() {
Crcle cl, c2, c3, c4;

cl = new Crcle();

try {
c2 = new Circle(20);

} catch (I maginaryCircl eException e) {
System out. println("Exception with radius 20");
c2 = new Circle();

}

try {
c3 = new Circle(-20);

} catch (I maginaryCircl eException e) {
System out. println("Exception with radius -20");
c3 =new Crcle();

c4 = new Circle(c2);
cl.displaylnfo();
c2.displayl nfo();

c3.displayl nfo();
c4. displaylnfo();

413

SOURCE CODE LISTINGS

414

class Circle {
static int defaultRadius = 10;
int radius;

Crcle() {
radi us = def aul t Radi us;

Circle(int radius) throws | magi naryC rcl eException {
if (radius < 0)
t hrow new | magi naryCircl eException();
el se
this.radi us = radius;

Circle(CGrcle referenceCircle) {
this.radius = referenceC rcle. radi us;

voi d displaylnfo() {
Systemout.println("This circle's radius is

+ radi us);

cl ass | magi naryCi rcl eExcepti on extends Exception {

}

14.01 - hello, java

| % o o o e e e e e e e e e e e e e eeeea oo
Thi s stand-al one application wites the words "Hello, Javal!" to
the standard out put.

Java's cl asses: System (1 ang)
String (1ang)

Custom cl asses: Hell oJava (inherits from Object)

SOURCE CODE LISTINGS

public class HelloJava {
public static void main(String[] args) {
Systemout. println("Hello, Javal");

14.02 - next prime

| ¥ e o e e e e e e e e e e e e e e aeeaaoas
This stand-al one application finds the next prine after the
i nteger passed to it as a command |ine paraneter.

Java's cl asses: Appl et (appl et)
Exception (Il ang)
String (lang)
I nt eger (1 ang)
Mat h (lang) to find the square root

Custom cl asses: NextPrine

public class NextPrine {
public static void main(String[] args) {

int startingPoint, candidate, last, i;
bool ean i sPrine;

if (args.length == 1) {

try {
Integer integer = new Integer(args[0]);
startingPoint = integer.intValue();

} catch (Exception e) {
return;

}

} else
return;

if (startingPoint <2) {
candi date = 2

415

SOURCE CODE LISTINGS

} else if (startingPoint == 2) {
candi date = 3;
} else {

candi date = startingPoint;

if (candidate %2 == 0) /* Test only odd nunbers */
candi dat e- - ;

do {

isPrime = true; /* Assune glorious success */
candidate += 2; /* Bunp to the next nunmber to test */
last = (int)Math.sqrt(candidate);

/* We'll check to see if candidate */

/* has any factors, from2 to |last */

/* Loop through odd numbers only */
for (i =3; (i <=last) & isPrine; i +=2) {
if ((candidate %i) == 0)
isPrinme = fal se;
}
} while (! isPrime);

Systemout.println("The next prinme after " +

startingPoint + " is " + candidate);

14.03 - stand alone

| X o e e e e e e e e e e iieedaaaas
Thi s stand-al one application paints a circle or square of the color
you' ve chosen wherever you click. This application keeps a |ist of
the shapes you' ve drawn and paints all the shapes in the |list when
it repaints.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng

416

SOURCE CODE LISTINGS

Col or (awt) defines colors

Choi ce (awt) shape and col or sel ection
choi ces

Vect or (util) list of shapes

Cust om cl asses: Si npl eDr aw
Circle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares

i mport java. appl et. Appl et;
i mport java.util.*;
i mport java.aw.*;

public class SinpleDraw extends Applet {
Vect or drawnShapes;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

/** Be able to run as a stand-al one application. */
public static void main(String[] args) {

/'l create a new instance of this applet
Si npl eDraw sd = new Si npl eDraw() ;

/1 initialize the applet
sd.init();

/'l create a frane to hold this appl et
Frame f = new Frame("Si npl eDraw");

/1l put the applet into the frane
f.add("Center", sd);

/'l give the frane a default size
f.resi ze(200, 100);

/'l make the frane appear

f.show();

417

SOURCE CODE LISTINGS

/** Create the GUI. */
public void init() {
drawnShapes = new Vector();

shapeChoi ce = new Choi ce();
shapeChoi ce. addltem("Circle");
shapeChoi ce. addl t en(" Square") ;
add(shapeChoi ce) ;

col or Choi ce = new Choi ce();
col or Choi ce. addl tem("Red") ;
col or Choi ce. addl tenm(" Green");
col or Choi ce. addl ten(" Bl ue");
add(col or Choi ce) ;

}

/** Repaint all the shapes. */
public void paint(Gaphics g) {
Shape s;
i nt nunBhapes;

nunShapes = drawnShapes. si ze();
for (int i =0; i < nunBShapes; i++) {

s = (Shape) drawnShapes. el ement At (i) ;
/1 When the shape draws, circles and squares each

/'l invoke their own draw net hod, dependi ng on
/'l which shape this is.

s.drawm(g);

}

/** Create a new shape. */
public bool ean nouseUp(Event e, int x, int y) {

Shape s; // This shape will be either a circle or a square.

String shapeString shapeChoi ce. get Sel ectedl tem();
String colorString = col or Choi ce. get Sel ectedltem();

418

SOURCE CODE LISTINGS

if (shapeString.equals("Circle"))
s = new Circle();

el se
s = new Square();

if (colorString.equal s("Red"))
s.color = Col or.red;

else if (colorString.equal s("Geen"))
s.color = Col or. green;

el se
s.col or = Col or. bl ue;

S.X = X;
S.y =Y,

dr awnShapes. addEl enent (s) ;
repaint();

return true;

}

/** Shapes provide commopn characteristics for the circle and
square. */
abstract class Shape {

static public final int shapeRadius = 20;

Col or col or;
int x;
int vy;

abstract void draw G aphics Qg);
}

/** Draws and nmaintains circle information. */
class Circle extends Shape {
void drawm G aphics g) {
g.setCol or(this.color);

419

SOURCE CODE LISTINGS

420

g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadi us * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
voi d drawm Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadius,
shapeRadi us * 2, shapeRadius * 2);

15.01 - threads

2
This applet paints a circle or square of the color you' ve chosen
wherever you click. Every second, it blinks the shape to yellow.
Al'l shapes blink independently of each other.

This appl et keeps a list of the shapes you' ve drawn
and paints all the shapes in the list when it repaints.

Java's cl asses: Appl et (appl et)
Event (awt) user-generated action
Graphics (aw) used for draw ng
Col or (awt) defines colors
Choi ce (awt) shape and col or sel ection
choi ces
Vect or (util) list of shapes

Thr ead (1ang)

Custom cl asses: Si npl eDr aw
Circle defines and draws circles
Square defines and draws squares
Shape a common ancestor for circles and squares
Bli nkThread controls drawing for a shape

SOURCE CODE LISTINGS

i mport java. appl et. Appl et;
i mport java.util.*;
i mport java.aw.*;

public class SinpleDraw extends Applet {
Vector threads;
Choi ce shapeChoi ce;
Choi ce col or Choi ce;

[** Create the GUI. */
public void init() {

}

threads = new Vector();

shapeChoi ce = new Choi ce();
shapeChoi ce. addltem("Circle");
shapeChoi ce. addl t en(" Square") ;
add(shapeChoi ce);

col or Choi ce = new Choi ce();
col or Choi ce. addl tem(" Red") ;
col or Choi ce. addl ten(" G een");
col or Choi ce. addl tem(" Bl ue");
add(col or Choi ce);

Bl i nkThread. g = getGaphics(); // Get the graphics object

/** Create a new shape. */
public bool ean mouseUp(Event e, int x, int y) {

Bl i nkThread t;
Shape s; // This shape will be either a circle or a square.

String shapeString = shapeChoice. get Sel ectedlten();
String colorString = col or Choi ce. get Sel ectedlten();

if (shapeString.equals("Circle"))
s = new Circle();

el se
s = new Square();

421

SOURCE CODE LISTINGS

if (colorString.equal s("Red"))
s.color = Color.red

else if (colorString.equal s("Geen"))
s.col or = Col or. green;

el se
s.col or = Col or. bl ue;

S.X = X;
S.y =Y,

t = new BlinkThread(s);
t.start();
t hreads. add El enent (t);

return true;

/** Resurme all the threads when the applet starts. */
public void start() {

Bl i nkThread t;

i nt nunrhr eads;

numrhr eads
for (int i

t hr eads. si ze();
0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.resunme();

}

/** Suspend all the threads when the applet stops. */
public void stop() {

Bl i nkThread t;

i nt nunThr eads;

numThreads = threads. size();
for (int i 0; i < nuniThreads; i++) {

t = (BlinkThread)threads. el enent At (i);

422

SOURCE CODE LISTINGS

t.suspend();

}

/** Stop all the threads when the appl et goes away. */
public void destroy() {

Bl i nkThread t;

i nt nunirhr eads;

numrhr eads
for (int i

t hreads. si ze();
0; i < nunThreads; i++) {

t = (BlinkThread)threads. el enent At (i);
t.stop();

}

/** Shapes provide commobn characteristics for the circle and
square. */
abstract class Shape {

static public final int shapeRadius = 20;

Col or col or;
int x;
int vy;

abstract void draw G aphics Qg);
abstract void drawBlink(G aphics g);

}

/** Draws and maintains circle information. */
class Circle extends Shape {
void drawBl i nk(G aphics g) {
g. set Col or (Col or. yel | ow) ;
g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadius * 2);
}

voi d drawm Graphics g) {
g.setCol or(this.color);

423

SOURCE CODE LISTINGS

g.fillOval (this.x - shapeRadius, this.y - shapeRadi us,
shapeRadi us * 2, shapeRadi us * 2);

}

/** Draws and mai ntains square information. */
cl ass Square extends Shape{
voi d drawBl i nk(Graphics g) {
g. set Col or (Col or. yel | ow) ;
g.fill Rect(this.x - shapeRadius, this.y - shapeRadius,
shapeRadi us * 2, shapeRadius * 2);
}

voi d draw Graphics g) {
g.setCol or(this.color);
g.fill Rect(this.x - shapeRadius, this.y - shapeRadius,
shapeRadi us * 2, shapeRadius * 2);

}

[** Thread to control when to blink a shape. */
class BlinkThread extends Thread {

static G aphics g;

Shape s;

Bl i nkThr ead(Shape s) {
this.s = s;

}

public void run() {

/! don't ever exit the thread
while(true) {

try {
s.drawBl i nk(g);

sl eep(250); // Go to sleep for a 1/4 of a second

424

SOURCE CODE LISTINGS

s.drawm g);
sl eep(1000); // Go to sleep for 1 second

} catch (Exception e) {
}

425

Appendix C

Java Syntax Summary

The if Statement

syntax:
i f (expression)
st at ement
example:
i f (nunEnpl oyees > 20)
buyNewBuUi | di ng() ;
alternate syntax:

i f (expression)
st at enent

el se
st at enent

example:

if (tenperature < 60)
wear AJacket () ;

el se
buyASweat er () ;

The while Statement

syntax:

whil e (expression)
st at enent

427

JAVA SYNTAX SUMMARY

example:

while (fireTooLow())
addAnot her Log() ;

The for Statement

syntax:

for (expressionl; expression2; expression3)
st at ement

example:

int[] nyArray = new nyArray[100];
i nt i

for (i = 0; i < 100; i++)
nmyArrayl[i] i

The do Statement

syntax:

do
st at emrent
whi | e (expression)

example:

do
i nvokeThi sMet hod() ;
while (keepGoing());

The switch Statement

syntax:

switch (expression){
case constant:
statenents

428

JAVA SYNTAX SUMMARY

case constant:
statenments

defaul t:
statenents

example:

swi tch (di sneyNunber) {

case 7:
System out. printl n("dwarves");
br eak;

case 101:
System out . println(“dal mati ons”);
br eak;

defaul t:
Systemout. println(“not used yet”);

The break Statement

syntax:

br eak;

example:

int i =1;

while (i <= 9) {
pl ayAnl nni ng(i);

if (itsRaining())
br eak;

i ++;

429

JAVA SYNTAX SUMMARY

The return Statement

syntax:

return;

example:

if (allDone())
return;

syntax:

return expression;

example:

i nt addThese (int nunml, int nunR)
return numl + nun®;

The new Operator

syntax:

new Cl assNane() ;

example:

Button b = new Button();

The instanceof Operator

syntax:

vari abl e i nstanceof C assNane

example:

if (myObject instanceof Button)
Systemout.println("this is a button");

430

JAVA SYNTAX SUMMARY

The throw Statement

syntax:

t hrow excepti on;

example:

if (seriousProblen())
t hrow new Exception();

The try, catch, and finally Statements

syntax without finally:

try
st at ement

catch (ExceptionNane variable) {
st at enment

example:

try {
doSonet hi ngbDanger ous() ;

} catch (Exception e) {
handl eTheExcepti on()

}
syntax with finally:

try
st at enent

catch (ExceptionNane variable) {
st at enent

finally
st at enent

example:

try {
doSonet hi ngbDanger ous() ;

} catch (Exception e) {
handl eTheExcepti on()

} finally {
al waysDoThi s();

} 431

Appendix D

About
CodeWarrior Gold

You've spent a lot of time with CodeWarrior as you’ve made your way through
the pages of this book. We hope you have enjoyed the experience. However, you
have just skimmed the surface of the power and potential available to you in
CodeWarrior.

This appendix is all about what you can do in CodeWarrior, not about how to
do it. In this appendix, we take a closer look at this industry-leading development
environment and at some of the amazing things you can do with CodeWarrior.
The documentation and tutorials you get when you buy CodeWarrior will teach
you how to use the tools quickly and effectively.

It is important to note that this appendix describes the full commercial ver-
sion of CodeWarrior called CodeWarrior Gold, not the Lite version that came with
this book. CodeWarrior Gold includes many more features, tools, and toys.

What Is CodeWarrior?

As you've seen throughout this book, CodeWarrior is an integrated development
environment—the CodeWarrior IDE—that consists of a project window, editor,
browser, compilers, and linkers. In addition, a source-level debugger lets you
check your code. There are other IDE-type environments out there. What makes
CodeWarrior so special?

The true beauty of the CodeWarrior IDE is that CodeWarrior is host, lan-
guage, and target independent. What does this mean?

e The host is the machine running the CodeWarrior IDE. Currently, you can run
CodeWarrior under the Mac OS or Be OS. CodeWarrior will be available for
Windows in the near future, if it is not already.

433

ABOUT CODEWARRIOR GOLD

434

* The language is the programming language you use. You can use CodeWar-
rior to write programs in assembly language, Pascal, Object Pascal, C, C++, or
Java. You pick the language you want to use.

* The target is the platform on which your code will finally run. Among the tar-
gets you can choose are the 68K and PowerPC Macs, any Win32 operating
system such as Windows NT or Windows 95 running on the Intel x86 chip,
the Java Virtual Machine, the Be OS, and the Magic OS.

This mix-and-match flexibility means that you can use a single environ-
ment—CodeWarrior—to create code for a variety of platforms using your lan-
guage of choice while working on your favorite computer.

There are two limitations to keep in mind. First, CodeWarrior does not in-
clude compilers for all targets for every language. However, the CodeWarrior
compiler and linker interface is publicly available to compiler developers who
wish to create plug-in tools that work with CodeWarrior. Such third-party tools
may be available for free as part of CodeWarrior Gold or can be purchased from
the manufacturer.

Second, CodeWarrior does not automatically convert your code so that it runs
properly on the target operating system or chip. If you want to write code for a
Windows program, you must still understand the Windows operating system and
write the code accordingly. CodeWarrior does not automatically convert your
Mac code into Windows code, or vice versa.

Nevertheless, having a single environment for all your development needs is a
great benefit. Metrowerks is continuously developing compilers and other tools
for new targets. With CodeWarrior’s public compiler interface, so are third parties.

The end result of CodeWarrior’s unique modular design is a tool of unbeliev-
able flexibility and power unmatched by any development environment any-
where in the world. You choose your favorite host, your preferred language, your
desired target.

Projects

CodeWarrior is a project-based IDE. To write a program using CodeWarrior, you
first need to create a project to track the source files, project preferences, and
object code. The project is your central control panel that brings all the pieces
together.

With all of the possible targets, this could be very complicated. However,
CodeWarrior provides you with premade default projects (stationery). When you

WHAT IS CODEWARRIOR?

create a new project, a pop-up menu lets you choose from a list of stationery
projects. There are stationery projects available for every target. CodeWarrior has
stationery for making ANSI console applications, Mac OS applications, Java ap-
plications, Windows applications, and so on.

The project window is the central command center for a CodeWarrior project.
A new project built from stationery may contain temporary “placeholder” source
files, real source files from a framework like PowerPlant, and all the necessary
code libraries.

Source code files are like those you've been using in this book. They are text
files with code to be compiled. Resource files are a Macintosh-standard way of
storing data, such as icons, strings, and alert boxes.

Source code file names typically end with some kind of extension such as . c,
.p, . cp . j avag and so forth. The naming extension tells CodeWarrior which com-
piler to use to compile the source code. You control the mapping between file
name extensions and compilers in the Preferences panel.

Libraries are precompiled code that your code can call. For example,
printf ()is a function in the ANSI C library that you can call from your code. You
can’t see the source code for a library because it has already been compiled.

Each target requires its own libraries. The stationery project files eliminate
most of the complication. CodeWarrior also comes with a “targeting guide” for
each target, such as the Mac OS, Win32, and so forth. The targeting guides tell you
about the libraries that come with CodeWarrior and which are appropriate for
your projects.

You can add any number of source, resource, and library files to your project.
You can even use the project window to organize files that contain notes, progress
reports, documentation, or other information related to a project but not compiled.
You can open and view these ancillary files directly from the project window.

When you compile, CodeWarrior parses the code in each source file, locates
any related headers, and generates object code appropriate for the desired target.
The object code is stored in the project. The project window keeps track of which
files need to be recompiled when you make changes, including any interdepen-
dencies. If you change a file, the project manager marks it for update and marks
all dependent files as well. Next time you compile, only those files marked for up-
date are recompiled.

When you Make a program, the linker connects the object code into the final
product—be it application, code resource, plug-in tool, system extension, or other
program. The linkers are very smart and “dead-strip” any code that isn’t actually
used. This keeps the final product as lean as possible. Metrowerks compilers and
linkers are among the fastest in the industry. They generate fast, stable, reliable
code and give you full control over the level of optimization you want to impose
on the final result.

435

ABOUT CODEWARRIOR GOLD

436

Editing
The CodeWarrior IDE User’s Guide explains all the features of the CodeWarrior
source code editor. Here are a few highlights.

You can work on as many as 32 source code files simultaneously. You can eas-
ily open any included file, jump to any function in the file, go to any line number,
split the editor window to view different parts of the file simultaneously, and so
on. There are all kinds of powerful code navigation features.

The CodeWarrior editor is aware of sourcecode control systems and will pre-
serve the integrity of controlled files. It supports colorized syntax and keywords,
so you can easily see comments, keywords, function calls, and so forth.

The editor can convert between Mac OS, DOS, and Unix line endings. You
don’t have to worry about the format. And, the editor handles large amounts of
text—up to several megabytes.

CodeWarrior features a search-and-replace mechanism. You can search and
replace text in a single file or any arbitrary group of files. You can even save sets of
files for easy reference in the future. The Bat choption lets you see the results of
your search in a list if you wish.

Compiling, Linking, and Running

Compiling is as easy as making a menu selection or typing a key command. The
CodeWarrior compilers list all errors, so you can fix them before going on. You
can even edit code directly in the error message window. When you choose Make
(or Run) from the Project menu, CodeWarrior compiles any uncompiled source files
and then locates and links in the libraries and builds the final program.

After the final code is built, you can then use that code in whatever way is ap-
propriate. If it is a plug-in of some type, you can hook it up with the appropriate
host and give it a test. You can even run some kinds of code (such as applications)
directly from the project window!

Using the stationery when you create a new project automatically includes all
the correct libraries required for a typical project. If you use other libraries, you
must add them yourself.

If your code calls a library routine that is not included in any of the libraries in
your project, you'll see an error message that this function or symbol is unde-
fined. You must then locate the library that contains the desired code and add it to
your project. CodeWarrior includes a Find Library utility you use in conjunction
with the Find window to locate the library that defines the symbol or routine you
want to use.

CODEWARRIOR AND ANSI C/C++ PROGRAMMING

Debugging

CodeWarrior includes a debugger for every target and language. You build de-
bugger information directly in the project when you compile and link your code.
Depending on the type of code, you may be able to launch the debugger directly
from the project. If not, you can launch the debugger separately. The CodeWarrior
Debugger Manual and the various targeting guides tell you how. You can use the
debugger to control program execution in a variety of ways. You can step into a
function, over a function, out of a function; you can stop, run, resume, or kill a
program. You can also set breakpoints, conditional breakpoints, and watchpoints.
You can control the debugging process using the keyboard, menu commands, or a
floating toolbar.

The Metrowerks debugger is essentially identical for every language and tar-
get. Some languages and targets have unique characteristics, so certain debugger
features aren’t always available. However, the debugger interface is the same for
every language and target. You'll feel right at home no matter what kind of code
you're writing.

The debugger displays variables in many useful formats, including strings
and structures. It supports expression evaluation, provides hex dumps of various
memory locations, and displays processor registers. You can switch instantly be-
tween source code and assembly language. You can debug multiple threads (in
threaded environments). The debugger even debugs code resources and dynami-
cally linked (shared) libraries.

CodeWarrior and ANSI C/C++ Programming

CodeWarrior comes with the Metrowerks Standard Libraries (MSL). These are the
platform-independent, ANSI-standard libraries for C and C++. You can use these
libraries in any code you write. CodeWarrior comes with a porting guide to help
you convert code designed for other environments and operating systems into
CodeWarrior projects.

The C, C++, and Assembly Language Manual describes the way that the com-
piler and linker implement the ANSI C and C++ standards. The ANSI standards
leave many definitions “compiler dependent.” This manual explains how
CodeWarrior treats these options.

CodeWarrior comes with other manuals that describe the standard libraries
and how to use them. The C Library Reference document describes the ANSI C li-
brary. It describes each call and its parameters and return value, plus provides
general information on usage. This document also covers the Metrowerks SIOUX
console library and the Unix functions that allow CodeWarrior programs to use
standard Unix calls. The C++ Library Reference does the same for the C++ standard
library.

437

ABOUT CODEWARRIOR GOLD

438

Frameworks

Application frameworks help object-oriented programmers write applications
quickly and efficiently. CodeWarrior comes with, not one or two, but three com-
plete, world-renowned frameworks in source code format. For the Mac OS, you
get Metrowerks” own PowerPlant. For Windows, you get the Microsoft Founda-
tion Classes (MFC). For Java, you get Sun’s Java APL

Not only do you get the frameworks, Metrowerks provides you with power-
ful learning tools to help you get up to speed. The PowerPlant Book, Microsoft’s
own help files for MFC, and Sun’s Java API documentation all come with
CodeWatrior.

For PowerPlant development, you also get Constructor, the Metrowerks
visual interface builder for rapid application development.

Other Great Tools

Professional developers know that there is more to creating great software than
writing code. CodeWarrior comes with a complete set of tools to analyze memory
usage, to create and edit resources, to profile code at runtime with microsecond
accuracy, to create a visual interface interactively, and much, much more.

What You Get with CodeWarrior Gold

CodeWarrior Gold comes with

e CodeWarrior IDE with project manager, editor, browser

® Source-level debugger

¢ Compilers and linkers for several languages

* Support for Mac OS, Win32, Java Virtual Machine, Magic OS, Be OS targets

e MPW shell and Metrowerks compiler and linker tools for 68K and PowerPC
Macs

¢ Profiling and memory-tracking tools
e PowerPlant application framework
e Constructor visual interface builder
e MFC application framework

¢ Java API framework

e Metrowerks Standard Libraries

WHAT YOU GET WITH CODEWARRIOR GOLD

e SIOUX input/output console library (for command line programs)
* Macintosh Toolbox libraries

* Thousands of pages of helpful documentation

* Megabytes of tutorial and example code

¢ Helpful source code and libraries

¢ Demos of various programmer tools

* Two free updates when you register

CodeWarrior Updates

When you register your purchase of CodeWarrior Gold, Metrowerks will send
you two additional update CDs within the first year. After that, you can purchase
the next update at a reduced rate. You also get free responsive technical support
by phone or e-mail.

Contact Information

CodeWarrior is available in various packages. For example, Metrowerks sells an
academic version of CodeWarrior at a greatly reduced price to students and other
individuals associated with educational institutions. Metrowerks” Discover Pro-
gramming series of products also includes CodeWarrior with various compilers
and linkers depending upon the CD.

For information on the latest developments, prices, and other Metrowerks
products, contact sales@metrowrks.com or visit their Web site at http://
www.metrowerks.com.

To order, contact your local software store, university computer store, or
Metrowerks Mail Order at

e voice: (800) 377-5416
e fax: (512) 873-4901

By mail, you can find Metrowerks Corporation at Suite 310, 2201 Donley
Drive, Austin, TX 78758.
By telephone, you can reach Metrowerks at:

e voice: (512) 873-4700
e fax: (512) 873-4900

439

Appendix E
Exercises

Chapter 5. The Development Cycle

1. Open the project Si npl est Appl et . yDouble-click Si npl est Appl et . j ava
erase anything else that’s there, and type in the following program:

public class SyntaxAppl et extends java. appl et. Applet {
static {
Systemout.printin("static initializer");
}
}

Select Make from the Project menu and then run this applet in the way
you learned about, by dropping the HTML file named Si npl est Appl et . ht m
onto the Metrowerks Java icon.

Once you’ve verified that this applet works and that it displays the words
“static initializer” in the Java Output window, make the following changes to
experiment with syntax errors. For each of these three examples, make the
suggested change and try to remake the project. Describe the syntax error
messages that result.

a. Change the line
static {
to say
static (
b. Change things back. Now change the line

public class SyntaxAppl et extends java.applet. Applet {

441

EXERCISES
to say
public class SyntaxApplet java.applet. Applet {
c. Change things back. Now change the line:
Systemout.printin("static initializer");
to say

Systemout.println(static initializer);

Chapter 6: Variables and Operators

1. Find the error in each of the following code fragments:

a.Systemout.println(Hello, world);
b.int nylnt nyQherlnt;
c.nylnt =+ 3;
d.nmylnt + 3 = nylnt;
2. Compute the value of ny| nt after each code fragment is executed:

a.nylnt = 5;
mylnt *= (3 + 4) * 2;
b.nylnt = 2;
nylnt *= (3* 4/ 2 -09;
cnylnt = 2;
nylnt /= 5;
nylnt--;
d.nylnt = 25;
nylnt /=3 * 2;
e.nylnt = 5;
Systemout.printIn("nylnt =" + nylnt

2);

f.oylnt = 1,
nylnt /= 10;

442

EXERCISES

Chapter 7: Introduction to Methods

1. What is wrong with each of the following methods?

a.void nmyMet hod {
return 3;

}
b.voi d anot her Met hod(i nt nunml) {
return numl * 2,

}

c.int addThese(int numl, int numR) {
int sum= nunl + nun®;

}
2. What is the result of executing nyMet hod()in the following example?

void nmyMet hod() {

int i = 3;
Systemout.printin("result =" + anotherMethod(i));

}

i nt anot her Met hod(i nt nunber) {
return nunber * nunber;

}
3. Write an applet that, in its i ni t () method, invokes another method that
writes your name to the Java Output window.

Chapter 8. Controlling Your Program’s Flow

1. What is wrong with each of the following code fragments?
a.if i
i ++;
b.for (i =0; i < 20; i++)
i--g
c.while ()
i ++;

d.do (i++)
until (i == 20);

443

EXERCISES

e.switch (i) {
case firstChoice:
case secondChoi ce:
Systemout.println("first or second choice");

br eak;
defaul t:
Systemout. println("other choice");
}
f.if (i < 20)
if (i == 20)
System out. println("never...");
g.while (done = true)
done = !done;
h.for (i =0; i < 20; i*2)
System out. println("nodification...");

2. What is the output from each of the following code fragments?

a.for (i =4; i >0; i--)
Systemout.println(i);
b.while (true)
Systemout.println("hello");
c.int i;
do {
System out. println(i++);
} while (i < 5);
d.int i =5
int j = 10;
if (i <j &&j > 10)
Systemout.println("first option");
el se
System out. println("second option");
e.int i =5
int j = 10;
if (i <j || j > 10)
Systemout.println("first option");
el se
System out. println("second option");

444

3. Modify next Pri ne. j avdo compute the prime numbers from 1 to 100.

4. Modify next Pri ne. j avdo compute the first 100 prime numbers.

Chapter 9: Objects
1. Given a class defined like this,

cl ass El ephant {
static int popul ation;
i nt age;

int tuskLength() {
return age * 2

}

int pop() {
return popul ati on;
}
}

and given code that creates two elephants, like this,

El ephant el = new El ephant ();
el.age = 3
e2.age = 5

what do expect the output to be for each of the following two code snippets?

a. Systemout. println(el.tuskLength());
System out. println(e2. tuskLength());

b. El ephant . popul ati on = 3000;
System out. println(el. pop());
El ephant . popul ati on = 4000;
System out. println(e2. pop());

2. What is wrong with each of the following class definitions?

a.class {
int length;
int wdth;
}

EXERCISES

445

EXERCISES

b.class Car {

i nt speed();
}
c.cl ass Boat {
int |ength;
void init(int length) {
I ength = | ength;
}
}
d.cl ass Flower {
int petals;

static int nunmPetal s() {
return petals;

}

3. Write an applet that uses a class called Student. The Student class should de-
fine a method that can determine whether a student has passed (with a score
of 60 and above) or failed (with a score below 60). Each student object will
keep track of a test score. The applet should create four students, assign dif-
ferent student objects the test scores 94, 72, 52, and 90, and write out whether
each one has passed or failed.

Chapter 10: Java’s Classes and Inheritance

1. Given two classes defined like this:

class Plant {
bool ean i sAlive;
bool ean beautiful () {
return isAlive;
}
}

cl ass Flower extends Plant {
i nt nunPet al s;
bool ean beautiful () {
if (nunPetals > 4 && i sAlive)
return true;
el se
return fal se;

446

EXERCISES

These definitions say, basically, that if a plant is alive it's beautiful, but if we're
dealing with a flower, we have a little more restrictive definition of beautiful.
Now let’s create three flowers:

Fl ower f1 = new Fl ower();
fl.isAlive = true;
f1. nunPetals = 4;

Fl ower f2 = new Fl ower();
f2.isAlive = true;
f2.nunPetals = 5;

Fl ower f3 = new Fl ower ();
f3.isAlive = fal se;
f2. nunPetal s = 100;

What are the results of each of the following code snippets?

a.Systemout.println(fl. beautiful());
b. System out. printl n(f2. beautiful ());
c. Systemout. println(f3.beautiful ());

2. What if the flower did not provide its own beaut i f ul () method? What do
you think the results would be for f 1, f 2, and f 3 if we used the plant’s beau-
ti ful () method instead of the flower’s?

3.1f i sAl i vewas turned into a pri vat evariable, how could you rewrite the
flower’s beaut i f ul ()method so that it would still work?

4. Imagine making i sAl i vepr ot ect edinstead of pri vat e
a. Would the flower’s beaut i f ul ()method need to be changed at all to de-
termine whether it was alive?

b. Could a class defined like this,

cl ass Fl ower Pot {
int dianeter;

}

determine whether a flower it contained was alive or not by directly
accessing i sSAl i v&

447

EXERCISES

5. What is wrong with each of the following class definitions?

a.class Computer {
i nt processor Speed();

}

b.class Tree {
abstract String genus();

}
c.abstract class Bird {
abstract int flightSpeed();
}

cl ass Seagull extends Bird {
}

d.class Ani mal {
private int nuniives;

}

cl ass Cat extends Ani mal;
Cat () {
nunlii ves = 9;

}

Chapter 11: Creating a User Interface

1. Given an empty pai nt () method to build upon defined like this,
public void paint(Gaphics g) {
}

how would you

a. Draw a solid, green circle that has its top left edge 30 pixels from the left,
30 pixels from the top, and that is 20 pixels in diameter?

b. Display the text “Who’s zooming who?” with its bottom, left edge 40 pix-
els from the left and 20 pixels from the top?

2. Create an applet that displays two mutually exclusive checkboxes labeled
“male” and “female.” If you are using CodeWarrior Lite, modify the empty
Java source file located in the folder 05. 01- enpty appl et

448

3. Adapt the program you developed in question 2 and write a message to the
Java Output window that identifies which checkbox the user selected when-
ever the user clicks one of the checkboxes.

4. Create an applet that contains a single button. Each time you click the button,
alternate between drawing a red and a blue square that has its left edge
located 10 pixels from the left, 10 pixels from the top, and that is 40 pixels on
each side.

Chapter 12: Working with Data

1. What is wrong with each of the following code snippets?

a. doubl e nyDoubl e = 50. 1;
int myl nt nyDoubl e;

b.int nunStudents;
int total Scores = 891,
i nt average = total Scores/nunttudents;

c. String school Mascot = new String();
int nunttudents = 409;
school Mascot = "tiger";

d.int nylntArray = new nylnt Array[10];

e.try {
I nteger nunber = new Integer(4);

}

if (nunmber !'= null)
Systemout. println("we have a nunber");

f.try {
doAConversion();
} catch {
handl eExcepti on();
}
g. bool ean[] toggl es = new bool ean[3] ;
for (int i =0; i <= 3; i++4)

toggles[i] = true;

h.int[] nylntArray;
System out. println(nylntArray.|ength);

EXERCISES

449

EXERCISES

2. What do you expect the output to be for each of the following lines of code?

a.try {
I nt eger nunber = new Integer('1");

Systemout.println("created a new I nteger instance");
} catch (Exception e) {
Systemout.printin("trouble in River Gty");

}

b.fl oat myFl oat (fl oat)50. 75;
i nt my | nt = (int) nyFloat;
System out. println(nylnt);

c.int[] nylntArray = new nylntArray[3];
for (int i =0; i < 3; i++)
nylntArray[i] = 1i;
System out. println(nylntArray.length);
Systemout. println(nylntArray[2]);

3. Change the program contained in Next Pri me3. j avalocated in the subfolder
08. 06- next prine 3Instead of writing out the prime number as soon as it
is found, save the prime number in the next unused element in an array of 100
integers. At the very end of the i ni t () method, loop through the array and
write out each entry.

Chapter 13: Advanced Topics

1. What is wrong with each of the following class definitions?

a.cl ass Rocket {
int liftoff(int speed, bool ean successful) {
return O;
}
double liftoff(int velocity, boolean reachObit) {
return 0.0;

}
}
b.class Muntain {

i nt hei ght;

i nt Mountain(int height) {
thi s. hei ght = height;
return hei ght;

}

}

450

EXERCISES

c.class Sun {
final Color color = Color.yellow,
i nt age;
int setAge(int years) {
age = years;
if (years > 10000000)
color = Col or. orange;

}

d.class Trouble {
void rightHere() {
throws new Exception();
}
}

2. What do you expect the output to be for the following code snippet?

try {
I nteger nylnteger = new Integer("$");
} catch (Exception x) {
Systemout.printlin("error");

} finally {
Systemout.println("clean up");

}

3. Write an applet that creates the number of checkboxes indicated by a parame-
ter in the HTML file that launches the applet and adds these checkboxes to its
user interface. You can leave off the names of the checkboxes if you’d like. You
can use the empty Java source file located in 05. 01- enpty proj ect

451

Appendix F

Solutions
to the Exercises

Chapter 6: Variables and Operators

1. a. There should be quotes around the words to be displayed, as in

Systemout.println("Hello, world");

b. There should be a comma separating variables declared on the same line, as
in

int nylnt, nyQherlnt;

c. To add 3 to a number, use the operator +=like this
nmylnt += 3;

d.The left side of the equation must be a variable, not an expression, as in
mylnt = nylnt + 3;

2.a.120
b.-6
c -1
d.4
e. “mylInt = 2” will appear in the Java Output window.

£. 0

453

SOLUTIONS TO THE EXERCISES

Chapter 7: Introduction to Methods

1. a. A method declared as voi d cannot return a value. To return a value such as
an i nt, declare the method using i nt instead of voi d like this:

int myMet hod {
return 3;

}

b. Again, the method must be declared as ani nt to return an i nt:

i nt anot her Met hod(i nt nunt) {
return nunl * 2;

}

c. A method declared as returning a value must return a value:

int addThese(int nunl, int nunR) {
int sum = numl + nung;
return sum

}

2. “result =9” will appear in the Java Output window.

3. public class WiteNaneAppl et extends java. appl et. Applet {
public void init() {
writeYour Name() ;

}

void witeYourNane() {
System out. println("Henry Hi ggens");

}

Chapter 8: Controlling Your Program’s Flow

1. a. Parentheses are needed around the expression in the i f test, and the expres-
sion must yield a Boolean result, as in

if (i '=0)
i ++;
b. Since we decrement i by 1 in the body of the f or loop, and since we incre-

menti by 1 in the modification of the loop counter, this will result in an infi-
nite loop!

454

SOLUTIONS TO THE EXERCISES

c. We need some expression in the parentheses for a whi | eloop; these paren-
theses cannot be empty.

d.The syntax is not do- unt i | but do- whi | e This might be updated to read

do (i++)
while (i < 20);

e. case statements require constants and will not take variables. If first -
Choi cewas equal to 1 and secondChoi cewas equal to 2, this could be re-
written as

switch (i) {
case 1:
case 2:
Systemout.printin("first or second choice");
br eak;
defaul t:
Systemout. println("other choice");

}

f. Since the firsti f test passes only if i is less than 20, the second i f test will
never execute, and hence the line that reads “never...” will never appear in
the Java Output window.

g. Since the result of the assignment operator is the value that was assigned, the
expression done = t r ue results in the value of t r ue. This means the whi | e
loop will never end, and we'll be caught in an infinite loop.

h. The loop counter, i, is never actually modified. If the intent was to multiply
i by 2, the loop should have been written

for (i =0; i <20; i *= 2)

Systemout.println("nodification...");

2.a.4

3

2

1
b. hello

hel |l o

hel |l o

455

SOLUTIONS TO THE EXERCISES

The word “hello” will be written to the Java Output window forever.

N WDNEF O

d.second option

e.first option
3. The solution can be found in the subfolder 08. 05- next pri me2.
4. The solution can be found in the subfolder 08. 06- next pri me3.

Chapter 9: Objects

l.a.6
10

b. 3000
4000

2. a. You must supply the name of the class when defining a class. You could fix
this snippet by writing

class Myd ass {
int length;
int width;

}

b. You must supply a method body when defining a method (the part between
the curly braces). It is possible to define a method without a body (see Chap-
ter 10). To fix this snippet, you could simply provide an empty body (though
it must return an i nt, as indicated in the method declaration):

class Car {
int speed() {
return O;

}

456

c. The intent of this i ni t () method seems to be to set the instance variable, but
parameters and local variables take precedence over instance and class vari-
ables. Therefore, the instance variable would never be set, and the parameter
would be set back to itself! This snippet needs to prefix the instance variable

d.The variable pet al s is defined as an instance variable, but the method
named nunPet al s()is defined as a class (that is, a st at i) method. Methods
defined as st at i c cannot access an instance variable without referencing a
particular object. If nunPet al s()was an instance method, then this would be

3. a.

with the special variable named t hi s:

cl ass Boat {
int |ength;
void init(int

I ength) {

this.length = | ength;

}

legal:

cl ass Fl ower {
int petals;

int nunPetal s() {
return petals;

SOLUTIONS TO THE EXERCISES

public class ScoreAppl et extends java. appl et. Applet {
public void init() {

Student sl
sl.score =
St udent s2
s2.score =
St udent s3
s3.score =
St udent s4
s4.score =

System out .
System out .
System out .
System out .

= new Student();
94;
new Student();
72;
= new Student();
52;
= new Student();
90;

println("sl passed? "
println("s2 passed? "

println("s3 passed?
println("s4 passed?

+ + + o+

sl. passed());
s2. passed());
s3. passed());
s4. passed());

457

SOLUTIONS TO THE EXERCISES

458

}
}

class Student {
int score;
bool ean passed() {
if (score >=60)
return true;
el se
return fal se;

Chapter 10: Java’s Classes and Inheritance

1. a.
e.

f.

fal se

true

fal se

The results would be t rue t rue and f al sefor f 1, f 2, and f 3, respectively.

First of all, to set the value for i SAl i ve you could write a method in the
Plant class that took a bool eanvalue and set this value, as in

voi d setlsAlive(bool ean newal ue) {
i sAlive = newal ue;

}

Then, when creating the flowers, instead of setting i sAl i vedirectly, you
could invoke its set | sAl i ve()method, as in

fl.setlsAlive(true);
and so on. Instead of accessing i sAl i vedirectly, methods in the Flower class

could invoke their superclass’s beaut i f ul () method, which would return
the value of the pri vat ei sAl i vevariable.

.If i sAl'i vewas defined as pr ot ect ed the flower’s beaut i f ul ()method not

need to be changed.

SOLUTIONS TO THE EXERCISES

b. Other classes that were not descendants of Plant, such as FlowerPot, could
not access i sAl i ve

5. a. There is no body defined for the method pr ocessor Speed()In this case, the
method and the class must both be declared as abst r act:

abstract class Conputer {
abstract int processor Speed();

}

b. If a class contains an abst r act method, the class itself must also be declared
as abstract:

abstract class Tree {
abstract String genus();

}

c. Descendants of an abst r act class must define the abst r act methods or they
must be declared abst r act themselves, as in

abstract class Bird {
abstract int flightSpeed();

abstract class Seagull extends Bird {

}

d. Subclasses cannot access their superclass’s pri vat evariables. To allow this,
the variable must be made pr ot ect ed (Or, you can use the default access re-
strictions, which are defined by not using any keywords. This allows all
methods defined in the same package to access that variable.)

cl ass Aninmal {

protected int nunLives;

cl ass Cat extends Aninal;
Cat () {
nunlLi ves = 9;

459

SOLUTIONS TO THE EXERCISES
Chapter 11: Creating a User Interface

1. a. g. set Col or(Col or. green);
g.fill Oval (30, 30, 20, 20);

b.g.drawSt ri ng("Who's zoon ng who?", 40, 20);

2. public class CheckboxAppl et extends java. appl et. Appl et {
public void init() {
checkboxG oup = new CheckboxG oup();

checkbox = new Checkbox("mal e", checkboxG oup, false);
add(checkbox) ;

checkbox = new Checkbox("femal e", checkboxGoup, false);
add(checkbox) ;

}

3. One way to do this is to keep track of the two checkboxes and identify which
object the user selected in the act i on() method for your applet, like this:

public class CheckboxAppl et extends java. appl et. Appl et {
Checkbox male, femal e;

public void init() {
checkboxG oup = new CheckboxG oup();

mal e = new Checkbox("nmal e", checkboxG oup, false);
add(mal e);

femal e = new Checkbox("femal e", checkboxG oup, false);
add(femal e);

}
public bool ean acti on(Event e, Cbject arg) {
if (e.target == nale)
Systemout.println("male");
else if (e.target == fenunle)

Systemout.println("female");

return super.action(e, arg);

460

SOLUTIONS TO THE EXERCISES

4.a.inmport java. appl et. Appl et;
i mport java.awt.*;

public class TestAppl et extends Applet {

Button toggle;
Col or col or = Col or. bl ue

public void init() {
toggle = new Button("toggle");

add(toggl e);
}

public bool ean action (Event e, Object arg) {

if (e.target == toggle) {

if (color == Color.red)
col or = Col or. bl ue;
el se
color = Color.red;
}
repaint();

return true;

}

public void paint(Gaphics g) {
g. set Col or(col or);
g.fillCQval (10, 10, 40, 40);

}

Chapter 12: Working with Data
1. a. You cannot assign a doubl eto an i nt without casting:

50. 1;
(int)nyDoubl e;

doubl e nmyDoubl e
i nt nmyl nt

461

SOLUTIONS TO THE EXERCISES

462

b. Dividing by zero withi nt values is not legal. (The variable nunst udent swill
contain the value zero because it has not yet been assigned a different value.)

c. A string cannot be assigned a value after it is created. Instead, set the string’s
value at the time it is created. (To work with strings that you can write to as
well as read from, use instances of StringBuffer instead.)

String school Mascot = new String("tiger");
int nunttudents = 409;

d.Make sure all arrays are declared with brackets after the data type, like this:
int[] nmylntArray = new nylntArray[10];

(Alternatively, arrays can be declared by placing the square brackets after the
variable name.)

e. A tryblock should have a matching cat chblock immediately following it.

f. The cat chblock needs to declare a variable that will be assigned the excep-
tion object:

try {
doAConver si on();

} catch (Exception exception) {
handl eException();

}

g. The only legal elements in an array declared to be 3 in length are the ele-
ments 0, 1, and 2. Therefore, the loop must end before it gets to 3:

bool ean[] toggl es = new bool ean[3] ;
for (int i =0; i < 3; i++4)
toggles[i] = true;

h. You cannot access the length of an array before it is created using the new
operator.

2. a. Since the character 1 is being passed to the Integer constructor (because of the

single quotes rather than double quotes surrounding the 1), Java will throw
an exception. The output will be simply

trouble in River Gty

SOLUTIONS TO THE EXERCISES

b. The floating-point value will be truncated, and the value 50 will appear in
the Java Output window.

c. The two lines in the Java Output window will be:

3
2

3. One possible version of the new program is:

public class NextPrine3 extends java.applet. Appl et {
public void init() {

i nt pri mel ndex, candidate, i, |ast;
bool ean i sPrine;
int[] pri meNunbers = new i nt[100];

pri meNurmbers[0] = 2;

candi date = 3;
primel ndex = 1;

while (prinelndex < 100) {

isPrinme = true;
last = (int)Math.sqgrt(candidate);

for (i =3; (i <= last) & isPrime; i += 2) {
if ((candidate %i) == 0)
isPrine = fal se;

}
if (isPrime) {

pri meNunber s[pri nel ndex] = candi dat e;
pri mel ndex++;

}

candi date += 2;

463

SOLUTIONS TO THE EXERCISES

for (i =0; i < 100; i++) {
Systemout.println("Prime #" + (i+1l) +
"is + primeNunbers[i]);

Chapter 13: Advanced Topics

1. a. Methods with the same name must have unique signatures. Signatures in-
clude the method name and the data types of its parameters (not the return
values).

b. Constructors cannot return a value, such as i nt. (They don’t even return
voi d.) Here’s how the Mountain class could be rewritten:

class Mountain {
int height;
Mount ai n(i nt hei ght) {
t hi s. hei ght = hei ght;
}
}

c. Contants (that is, variables declared as f i nal) cannot be changed. To be able
to change a variable, leave off the f i nal keyword:

class Sun {
Col or color = Col or.yell ow,
int age;
int setAge(int years) {
age = years;
if (years > 10000000)
color = Col or. orange;

}

d. Methods that throw an exception must include the t hr owskeyword, followed
by the type of exception they throw, in the method declaration, like this:

class Troubl e throws Exception {

464

SOLUTIONS TO THE EXERCISES

void rightHere() {
t hrows new Exception();
}
}

The following two lines will appear in the Java Output window:

error
cl ean up

i mport java.aw . Checkbox;

public class CheckboxAppl et extends java. appl et. Appl et {
public void init() {
i nt num
Checkbox checkbox;
String s = get Paraneter("checks");

try {
num = | nteger.parselnt(s);

} catch (Exception e) {
num = 0; // default

}

for (int i =0; i < num i++) {
checkbox = new Checkbox();
add(checkbox) ;

}

}

Here’s a possible HTML file for this code:

<appl et codebase="Checkbox" code="CheckboxAppl et. cl ass"
wi dt h=250 hei ght =100>

<par am nane=checks val ue="25">

</ appl et >

465

Appendix G
Additional Resources

This section provides a number of links to additional resources for learning more
about Java.

Web Resources
Sites Supporting This Book

There are two places where you can go on the Web to learn more about Learn Java
on the Macintosh. The first site is maintained by Metrowerks and can be found at

htt p: / / ww. met r ower ks. coni product s/ di scover/j aval

The second site is maintained by Addison-Wesley and can be found by starting at
the Addison-Wesley home page, located at

http://ww. aw. com devpr ess/
You'll find Learn Java on the Macintosh at

http://ww. aw. conf devpress/ 19157. ht m

Documentation

JavaSoft, Sun Microsystem’s spin-off company that develops and supports Java,
has posted lots of great documentation on their site. For the latest API (applica-
tion programming interface) documentation, look under

http://java. sun. conf JDK- 1. 0/ api / packages. ht i

For a directory of other documentation sources maintained by JavaSoft, check
out

467

ADDITIONAL RESOURCES

468

http://java. sun. contj ava. sun. coni doc/ pr ogr ammer . ht m

The documentation at this site includes the Java Language Specifications, the
Java Virtual Machine, and additional introductory material to learn more about
Java programming.

Java Applets on the Web

There are many examples of great Java applets on the Web, and more are being
added everyday. Lots of these samples include the source code. You can find
many of these at the Gamelan site, located at:

http://ww. ganel an. coni nof r ane/ Ganel an. pr ogr anmi ng. ht m

Internet Resources

Among the best Internet resources are the newsgroups. In particular, you should
check out

conp. | ang. j ava

for lively discussions on programming in Java and the latest directions in Java
software.

There are also ftp sites where you can download the latest software samples
and documentation. Start at

http://java. sun. confjava. sun. coni devcor ner. ht m

and follow the links to the latest and greatest that JavaSoft has to offer.

Books

Java Essentials for C and C++ Programmers,
by Barry Boone

This book, published by Addison-Wesley, will help you find out more about
Java’s advanced features, such as exceptions, multitasking, interfaces, and con-
structors. Though this book is written for programmers, once you are up to speed
on Java programming, this book is a great resource for learning about these ad-
vanced topics.

ADDITIONAL RESOURCES

Learn C on the Macintosh, by Dave Mark

Java is very similar to C in some fundamental ways. This book, published by
Addison-Wesley, can help you learn the basics of variables, operators, data types,
and flow control. Most of the information in Learn C on the Macintosh that is rele-
vant to Java is included in the chapters of Learn Java on the Macintosh. However, if
you want to learn more about a language that is a predecessor to Java, Dave’s
book is a great place to start.

469

	Chapter 1 - Welcome Aboard
	What's in This Package?
	Why Learn Java?
	What Should You Know to Get Started?
	What Equipment Will You Need?
	The Lay of the Land
	Conventions Used in This Book
	Review
	What's Next?

	Chapter 2 - Installing and Testing CodeWarrior Lite
	Installing CodeWarrior Lite
	Testing CodeWarrior Lite
	Review
	What's Next?

	Chapter 3 - Web Programming Basics
	Web Content
	Interactivity
	Jazzing Up Your Web Page
	Reasons for Programming
	What Is a Program?
	How Is Java Different from HTML?
	Other Programming Languages
	Developing Software Using These Other Languages
	Why Java Is Perfect for the Web
	Runtime Environments
	Review
	What's Next?

	Chapter 4 - Problem Solving in Java
	What It's Like to Be a Programmer
	The Programming Process
	Designing Your Program
	Review
	What's Next?

	Chapter 5 - The Development Cycle
	An Overview
	Organizing Your Files
	An Example: The Simplest Applet
	Editing the Source File
	Syntax Errors
	Displaying Messages
	Review
	What's Next?

	Chapter 6 - Variables and Operators
	An Introduction to Variables
	Working with Variables
	Variable Names
	The Size of a Type
	Operators
	Arithmetic Operators
	Operator Order
	Bitwise Operators
	Sample Programs
	Programming with Style
	Review
	What's Next?

	Chapter 7 - Introduction to Methods
	Creating a Method
	Invoking a Method
	Defining Parameters and Return Values
	Designing with Methods
	Taking Part in Your Applet's Life Cycle
	Sample Programs
	Review
	What's Next?

	Chapter 8 - Controlling Your Program's Flow
	Boolean Values
	Flow Control
	Expressions
	Comparative Operators
	Logical Operators
	Compound Expressions
	Statements
	Curly Braces Revisited
	Where to Place the Semicolon
	The Loneliest Statement
	The while Statement
	The for Statement
	The do Statement
	The switch Statement
	break Statements in Loops
	Sample Programs
	Review
	What's Next?

	Chaper 9 - Objects
	The Purpose of Objects
	How to Create Objects
	Defining Instance Variables
	Defining Instance Methods
	Sample Programs
	Defining Class Variables and Methods
	More Sample Programs
	Review
	What's Next?

	Chapter 10 - Java's Classes and Inheritance
	What is Inheritance?
	When to Use Inheritance
	Advanced Inheritance Topics
	Packages
	Sample Programs
	Review
	What's Next?

	Chapter 11 - Creating a User Interface
	Drawing
	Java's User Interface Elements
	Arranging User Interface Elements
	Events
	Sample Programs
	Review
	What's Next?

	Chapter 12 - Working with Data
	Integer Data
	Floating-Point Data
	Boolean Data
	Character Data
	Objects
	Strings
	The Integer and Floating-Point Classes
	Handling Exceptions
	Arrays
	Vectors
	Hash Tables
	Sample Programs
	Review
	What's Next?

	Chapter 13 - Advanced Topics
	Applet Parameters
	Method Overloading
	Constructors
	Constants
	Throwing Exceptions
	Sample Programs
	Review
	What's Next?

	Chapter 14 - Stand-Alone Applications
	What Is a Stand-Alone Application?
	Differences Between Applications and Applets
	Sample Programs
	Review
	What's Next?

	Chapter 15 - Where Do You Go from Here?
	Learn about Interfaces
	Define Your Own Packages
	Learn about Threads
	Learn How Java Works on the Inside
	Explore Java's Packages
	Study Other Resources
	Sample Program
	Review
	What's Next?

	Appendix A - Glossary
	Appendix B - Source Code Listings
	Appendix C - Java Syntax Summary
	Appendix D - About CodeWarrior Gold
	Appendix E - Exercises
	Appendix F - Solutions to the Exercises
	Appendix G - Additional Resources

